Open Access
Issue
ITM Web Conf.
Volume 59, 2024
II International Workshop “Hybrid Methods of Modeling and Optimization in Complex Systems” (HMMOCS-II 2023)
Article Number 03002
Number of page(s) 9
Section Data Mining, Machine Learning and Patern Recognition
DOI https://doi.org/10.1051/itmconf/20245903002
Published online 25 January 2024
  1. A.F. O’Connell, J.D. Nichols, K.U. Karanth, Camera traps in animal ecology: Methods and analyses (Berlin, Germany: Springer Science & Business Media, 2011), p. 279. https://doi.org/10.1007/978-4-431-99495-4 [Google Scholar]
  2. A. Gomez-Villa, A. Salazar, F. Vargas, Ecological Informatics 41, 24–32 (2017). https://doi.org/10.1016/j.ecoinf.2017.07.004 [CrossRef] [Google Scholar]
  3. A. Swanson, M. Kosmala, C.J. Lintott, R. Simpson, A.M. Smith, C. Packer, Scientific Data 2, 150026 (2015) [CrossRef] [Google Scholar]
  4. G. Chen, T.X. Han, Z. He, R.W. Kays, T.D. Forrester, Deep convolutional neural network based species recognition for wild animal monitoring, 2014 IEEE International Conference on Image Processing (ICIP), 858–862 (2014) [Google Scholar]
  5. S. Beery, G. Van Horn, P. Perona. (2018). Recognition in Terra Incognita. Computer Vision - ECCV 2018. Lecture Notes in Computer Science, vol 11220. (Springer, Cham, 2018). https://doi.org/10.1007/978-3-030-01270-0_28 [Google Scholar]
  6. M.S. Norouzzadeh, A. Nguyen, M. Kosmala, A. Swanson, M.S. Palmer, C. Packer, J. Clune, Proceedings of the National Academy of Sciences of the United States of America 115(25), E5716–E5725 (2018). https://doi.org/10.1073/pnas.1719367115 [Google Scholar]
  7. M. Willi, R.T. Pitman, A.W. Cardoso, et al., Methods in Ecology and Evolution 10(1), 80–91 (2019). https://doi.org/10.1111/2041-210X.13099 [CrossRef] [Google Scholar]
  8. A.V. Leus, V.A. Efremov, Proceedings of the Mordovia State Nature Reserve 28, 121–129 (2021). [Google Scholar]
  9. J. Glenn, YOLOv5 release v6.1. (2021). https://github.com/ultralytics/yolov5/releases/tag/v6.1 [Google Scholar]
  10. C. Wang, I. Yeh, H.M. Liao, You Only Learn One Representation: Unified Network for Multiple Tasks (2021). https://doi.org/10.48550/arXiv.2105.04206 [Google Scholar]
  11. Z. Ge, S. Liu, F. Wang, Z. Li, J. Sun, YOLOX: Exceeding YOLO Series in 2021 (2021). https://doi.org/10.48550/arXiv.2107.08430 [Google Scholar]
  12. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90 [Google Scholar]
  13. J. Hu, L. Shen, S. Albanie, G. Sun, E. Wu, IEEE Transactions on Pattern Analysis and Machine Intelligence 42(8), 2011–2023 (2020). https://doi.org/10.1109/TPAMI.2019.2913372 [CrossRef] [PubMed] [Google Scholar]
  14. H. Zhang, C. Wu, Z. Zhang, Y. Zhu., Z. Zhang, H. Lin, Y. Sun, T. He, J. Mueller, R. Manmatha, M. Li, A. Smola, ResNeSt: Split-Attention Networks (2020). https://doi.org/10.48550/arXiv.2004.08955 [Google Scholar]
  15. D. Han, S. Yun, B. Heo, Y.J. Yoo, ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network (2020). https://doi.org/10.48550/arXiv.2007.00992 [Google Scholar]
  16. M.A. Tabak, M.S. Norouzzadeh, D.W. Wolfson, S.J. Sweeney, K.C. VerCauteren, N.P. Snow, J.M. Halseth, P.A. Di Salvo, J.S. Lewis, M.D. White, B. Teton, J.C. Beasley, P.E. Schlichting, R.K. Boughton, B. Wight, E.S. Newkirk, J.S. Ivan, E.A. Odell, R.K. Brook, R.S. Mille, Methods in Ecology and Evolution 10(4), 585–590 (2018). https://doi.org/10.1111/2041-210X.13120 [Google Scholar]
  17. C. Zhu, T. H. Li, G. Li, Towards Automatic Wild Animal Detection in Low Quality Camera-Trap Images Using Two-Channeled Perceiving Residual Pyramid Networks, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), 28602864 (2017). https://doi.org/10.1109/iccvw.2017.33 [Google Scholar]
  18. H. Yousif, J. Yuan, R. Kays, Z. He. (2017). Fast human-animal detection from highly cluttered camera-trap images using joint background modeling and deep learning classification. 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4, https://doi.org/10.1109/ISCAS.2017.8050762 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.