Open Access
Issue
ITM Web Conf.
Volume 60, 2024
2023 5th International Conference on Advanced Information Science and System (AISS 2023)
Article Number 00010
Number of page(s) 6
DOI https://doi.org/10.1051/itmconf/20246000010
Published online 09 January 2024
  1. B. Parhami, “Efficient Hamming weight comparators for binary vectors based on accumulative and up/down parallel counters, ” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 2, pp. 167–171 (2009) [Google Scholar]
  2. I. Skliarova, “Accelerating Population Count with a Hardware Co-Processor for MicroBlaze, ” Journal of Low Power Electronics and Applications, vol. 11, no. 2 (2021) [CrossRef] [Google Scholar]
  3. V. Sklyarov and I. Skliarova, “Digital Hamming weight and distance analyzers for binary vectors and matrices, ” International Journal of Innovative Computing, Information and Control, vol. 9, no. 12, pp. 4825-4849 (2013) [Google Scholar]
  4. V. Sklyarov and I. Skliarova, “Multi-core DSPbased vector set bits counters/comparators, ” Journal of Signal Processing Systems, vol. 80, no. 3, pp. 309–322 (2015) [CrossRef] [Google Scholar]
  5. C. Qin, C.C. Chang, and P.L. Tsou, “Perceptual Image Hashing based on the Error Diffusion Halftone Mechanism, ” International Journal of Innovative Computing, Information and Control, vol. 8, no. 9, pp. 6161-6172 (2012) [Google Scholar]
  6. V. Sklyarov, I. Skliarova, and I. Utepbergenov, “Hardware Accelerators for Data Processing in High-performance Computing Systems, ” tutorial, Proceedings of the 15th International Conference on Application of Information and Communication Technologies, October, virtual mode, pp. 1-4 (2021) [Google Scholar]
  7. I.N. John, P.W. Kamaku, D.K. Macharia, and N.M. Mutua, “Error Detection and Correction Using Hamming and Cyclic Codes in a Communication Channel, ” Pure and Applied Mathematics Journal, vol. 5, no. 6, pp. 220-231 (2016) [CrossRef] [Google Scholar]
  8. J.S. Coron and A. Gini, “Improved cryptanalysis of the AJPS Mersenne based cryptosystem, ” J. Math. Cryptol, vol. 14, pp. 218–223 (2020) [CrossRef] [MathSciNet] [Google Scholar]
  9. I. Skliarova and A.B. Ferrari, “Reconfigurable Hardware SAT Solvers: A Survey of Systems, ” IEEE Transactions on Computers, vol. 53, no. 11, pp. 1449-1461 (2004) [CrossRef] [Google Scholar]
  10. A. Sarkar, Z. Al-Ars, C.G. Almudever and K.L.M. Bertels, “QiBAM: Approximate Sub-String Index Search on Quantum Accelerators Applied to DNA Read Alignment, ” Electronics, vol. 10, no. 19 (2021) [Google Scholar]
  11. K. Yamamoto, M. Ikebe, T. Asai and M. Motomura, “FPGA-Based Stream Processing for Frequent Itemset Mining with Incremental Multiple Hashes, ” Circuits and Systems, vol. 7, no. 10 (2016) [Google Scholar]
  12. C.H. Chee, J. Jaafar, I.A. Aziz, M.H. Hasan, and W. Yeoh, “Algorithms for frequent itemset mining: a literature review, ” Artificial Intelligence Review (2018) [Google Scholar]
  13. S.W. Aj-Haj Baddar and K.E. Batcher, Designing Sorting Networks, A New Paradigm. Springer (2011) [Google Scholar]
  14. V. Sklyarov and I. Skliarova, “High-performance implementation of regular and easily scalable sorting networks on an FPGA, ” Microprocessors and Microsystems, vol. 38, no. 5, pp. 470-484 (2014) [CrossRef] [Google Scholar]
  15. I. Skliarova and V. Sklyarov, FPGA-based Hardware Accelerators. Springer, Switzerland (2019) [CrossRef] [Google Scholar]
  16. S. Sun, Analysis and acceleration of data mining algorithms on high performance reconfigurable computing platforms, Ph.D. thesis, Iowa State University. Available online: http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1421&context=etd (2011) [Google Scholar]
  17. X. Wu, V. Kumar, J.R. Quinlan, et al., “Top 10 algorithms in data mining, ” Knowledge and Information Systems, vol. 14, pp. 1-37 (2007) [Google Scholar]
  18. M. Yasir, A. Ashraf, M.U. Chaudhry, F. Hassan, J.H. Lee, M. Jasiński, Z. Leonowicz, and E. Jasińska, “D-GENE-Based Discovery of Frequent Occupational Diseases among Female HomeBased Workers, ” Electronics, vol. 10, no. 11 (2021) [Google Scholar]
  19. D. Zmaranda, H. Silaghi, G. Gabor, and C. Vancea, “Issues on Applying Knowledge-Based Techniques in Real-Time Control Systems, ” International Journal of Computers, Communications and Control, vol. 8, no. 1, pp. 166-175 (2013) [Google Scholar]
  20. L. Field, T. Barnie, J. Blundy, R.A. Brooker, D. Keir, E. Lewi, and K. Saunders, “Integrated field, satellite and petrological observations of the November 2010 eruption of Erta Ale, ” Bulletin of Volcanology, vol. 74, no. 10, pp. 2251–2271 (2012) [CrossRef] [Google Scholar]
  21. W. Zhang, K. Thurow, and R. Stoll, “A Knowledge-based Telemonitoring Platform for Application in Remote Healthcare, ” International Journal of Computers, Communications and Control, vol. 9, no. 5, pp. 644-654 (2014) [CrossRef] [MathSciNet] [Google Scholar]
  22. M. Fularz, M. Kraft, A. Schmidt, and A. Kasiński, “A High-performance FPGA-based Image Feature Detector and Matcher Based on the FAST and BRIEF Algorithms, ” International Journal of Advanced Robotic Systems, vol. 12, no. 10 (2015) [Google Scholar]
  23. B. Parhami, “Computer architecture for big data”, in: Encyclopedia of Big Data Technologies. S. Sakr and A. Zomaya (eds.), Springer (2018) [Google Scholar]
  24. V. Sklyarov, A. Rjabov, I. Skliarova, and A. Sudnitson, “High-Performance Information Processing in Distributed Computing Systems, ” International Journal of Innovative Computing, Information and Control, vol. 12, no. 1, pp. 139-160 (2016) [Google Scholar]
  25. V. Sklyarov and I. Skliarova, “Design and implementation of counting networks, ” Computing, vol. 97, no. 6, pp. 557–577 (2015) [CrossRef] [MathSciNet] [Google Scholar]
  26. AMD, Inc., 7 Series FPGAs Data Sheet: Overview. Available online: https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf (2020) [Google Scholar]
  27. Digilent, Inc., Nexys-4 Reference Manual, available online: https://reference.digilentinc.com/reference/programmable-logic/nexys-4/reference-manual. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.