Open Access
ITM Web Conf.
Volume 62, 2024
International Conference on Exploring Service Science (IESS 2.4)
Article Number 04001
Number of page(s) 14
Section Smart HR, Recruitment & Education
Published online 01 February 2024
  1. Varriale, L., et al. Digital technologies for promoting the inclusion of workers with disabilities: A brief investigation. in ITM Web of Conferences. EDP Sciences. (2023). [Google Scholar]
  2. Walkowiak, E., Neurodiversity of the workforce and digital transformation: The case of inclusion of autistic workers at the workplace. Technological Forecasting Social Change, 168: p. 120739. (2021). [CrossRef] [Google Scholar]
  3. Last, C., Global commons in the global brain. Journal of Technological Forecasting Social Change, 114: p. 48–64. (2017). [CrossRef] [Google Scholar]
  4. Montes, G.A. and B. Goertzel, Distributed, decentralized, and democratized artificial intelligence. Technological Forecasting and Social Change, 141: p. 354–358. (2019). [CrossRef] [Google Scholar]
  5. O’Neil, C., Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy, in Weapons of Math Destruction. (2016). [Google Scholar]
  6. Piketty, T., Capital in the twenty-first century, in Capital in the Twenty-First Century, Harvard University Press. (2014). [CrossRef] [Google Scholar]
  7. Kolotouchkina, O., C.L. Barroso, and J.L.M.J. Sánchez, Smart cities, the digital divide, and people with disabilities. Cities, 123: p. 103613. (2022). [CrossRef] [Google Scholar]
  8. Cho, M. and K.M. Kim, Effect of digital divide on people with disabilities during the COVID-19 pandemic. Disability Health Journal, 15(1): p. 101214. (2022). [CrossRef] [Google Scholar]
  9. Park, E.-Y., Digital competence and internet use/behavior of persons with disabilities in PC and smart device use. Universal Access in the Information Society, 21(2): p. 477–489. (2022). [CrossRef] [Google Scholar]
  10. Nugent, S.E. and S. Scott-Parker, Recruitment AI has a Disability Problem: anticipating and mitigating unfair automated hiring decisions, in Towards Trustworthy Artificial Intelligent Systems, Springer. p. 85–96. (2022). [CrossRef] [Google Scholar]
  11. Tilmes, N., Disability, fairness, and algorithmic bias in AI recruitment. Ethics Information Technology, 24(2): p. 21. (2022). [CrossRef] [Google Scholar]
  12. Jetha, A., et al., Inclusion of young people with disabilities in the future of work: forecasting workplace, labour market and community-based strategies through an online and accessible Delphi survey protocol. BMJ Open, 12(7): p. e055452. (2022). [CrossRef] [Google Scholar]
  13. Wass, S., E. Thygesen, and Ö. Imre. Designing towards social inclusion-insights on employers’ willingness to recruit people with intellectual and developmental disabilities. in European Conference on Information Systems. (2023). [Google Scholar]
  14. Yang, Y., et al., A bibliometric review of laboratory safety in universities. Safety Science, 120: p. 14–24. (2019). [CrossRef] [Google Scholar]
  15. Xie, L., et al., Bibliometric and visualized analysis of scientific publications on atlantoaxial spine surgery based on Web of Science and VOSviewer. World Neurosurgery, 137: p. 435–442. e4. (2020). [CrossRef] [Google Scholar]
  16. McAllister, J.T., L. Lennertz, and Z. Atencio Mojica, Mapping a discipline: a guide to using VOSviewer for bibliometric and visual analysis. Science Technology Libraries, 41(3): p. 319–348. (2022). [CrossRef] [Google Scholar]
  17. Sendler, U., Beherrschung der industriellen Komplexität mit SysLM (Systems lifecycle management), in Industrie 4.0, Springer. (2013). [Google Scholar]
  18. Romero, D., et al. Towards a human-centred reference architecture for next generation balanced automation systems: Human-automation symbiosis. in Advances in Production Management Systems: Innovative Production Management Towards Sustainable Growth: IFIP WG 5.7 International Conference, APMS 2015, Tokyo, Japan, September 7-9, 2015, Proceedings, Part II 0. Springer. (2015). [Google Scholar]
  19. Romero, D., et al. The operator 4.0: Human cyber-physical systems & adaptive automation towards human-automation symbiosis work systems. in Advances in Production Management Systems. Initiatives for a Sustainable World: IFIP WG 5.7 International Conference, APMS 2016, Iguassu Falls, Brazil, September 3-7, 2016, Revised Selected Papers. Springer. (2016). [Google Scholar]
  20. Korn, O., et al. Context-aware assistive systems at the workplace: analyzing the effects of projection and gamification. in Proceedings of the 7th international conference on pervasive technologies related to assistive environments. (2014). [Google Scholar]
  21. Shahzad, F. and L. Varriale, Digital Technology in HRM: Insights and Challenges through a bibliometric analysis for e-recruitment, in ICTO 2023. (2023). [Google Scholar]
  22. Schwab, K., The Fourth Industrial Revolution. Portfolio. (2017) [Google Scholar]
  23. Panda, S., Evolving Learner Support Systems: From Distance to Digital Education, in Handbook of Open, Distance and Digital Education, Springer. p. 841–859. (2023). [CrossRef] [Google Scholar]
  24. Ravid, D.M., et al., EPM 20/20: A review, framework, and research agenda for electronic performance monitoring. Journal of Management, 46(1): p. 100–126. (2020). [CrossRef] [Google Scholar]
  25. Gigauri, I., E. Gulua, and Z. Mushkudiani, Current advances in digital recruitment of human resources and its potential for companies. SEU Science. (2020). [Google Scholar]
  26. Halid, H., S.N.A. Halim, and K. Ravesangar, Human Resource Management Practices in the Digital Era, in Technological Challenges: The Human Side of the Digital Age, Springer. p. 109–158. (2022). [CrossRef] [Google Scholar]
  27. Israrul Haque, M., Human Resource Analytics: Key to Digital Transformation. IUP Journal of Management Research, 21(3). (2022). [Google Scholar]
  28. Williams, P., P. McDonald, and R. Mayes, Recruitment in the gig economy: attraction and selection on digital platforms. The International Journal of Human Resource Management, 32(19): p. 4136–4162. (2021). [CrossRef] [Google Scholar]
  29. Markoulli, M.P., et al., Mapping Human Resource Management: Reviewing the field and charting future directions. Human Resource Management Review, 27(3): p. 367–396. (2017). [CrossRef] [Google Scholar]
  30. Harney, B. and D.G. Collings, Navigating the shifting landscapes of HRM. Human Resource Management Review, 31(4): p. 100824. (2021). [CrossRef] [Google Scholar]
  31. Meijerink, J., et al., Algorithmic human resource management: Synthesizing developments and cross-disciplinary insights on digital HRM. The International Journal of Human Resource Management, 32(12): p. 2545–2562. (2021). [CrossRef] [Google Scholar]
  32. Hedenus, A., C. Backman, and P. Håkansson, Whom do you know? Recruiters’ motives for assessing jobseekers’ online networks. The International Journal of Human Resource Management, 32(8): p. 1754–1777. (2021). [CrossRef] [Google Scholar]
  33. Li, J.-M., et al., Systematic literature review of human-machine collaboration in organizations using bibliometric analysis. 2023. [Google Scholar]
  34. Lv, Z., et al., Bibliometric analysis of IgG4-related disease research from 2003 to 2022 based on Web of Science Core Collection Databases. ClinicalRheumatology, 42(1): p. 15–27. (2023). [Google Scholar]
  35. Andersen, N., Mapping the expatriate literature: A bibliometric review of the field from 1998 to 2017 and identification of current research fronts. The International Journal of Human Resource Management, 32(22): p. 4687–4724. (2021). [CrossRef] [Google Scholar]
  36. Huang, M.-H. and R.T. Rust, Artificial intelligence in service. Journal of Service Research, 21(2): p. 155–172. (2018). [CrossRef] [Google Scholar]
  37. Wirtz, J., et al., Brave new world: service robots in the frontline. Journal of Service Management, 29(5): p. 907–931. (2018). [CrossRef] [Google Scholar]
  38. Ren, Y., R. Kraut, and S. Kiesler, Applying common identity and bond theory to design of online communities. Organization Studies, 28(3): p. 377–408. (2007). [CrossRef] [Google Scholar]
  39. Tambe, P., P. Cappelli, and V. Yakubovich, Artificial intelligence in human resources management: Challenges and a path forward. California Management Review, 61(4): p. 15–42. (2019). [CrossRef] [Google Scholar]
  40. An, X.Y. and Q.Q. Wu, Co-word analysis of the trends in stem cells field based on subject heading weighting. Scientometrics, 88(1): p. 133–144. (2011). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.