Open Access
Issue
ITM Web Conf.
Volume 63, 2024
1st International Conference on Advances in Machine Intelligence, and Cybersecurity Technologies (AMICT2023)
Article Number 01010
Number of page(s) 8
DOI https://doi.org/10.1051/itmconf/20246301010
Published online 13 February 2024
  1. A. Anwarsha and T. N. Babu, ‘Recent advancements of signal processing and artificial intelligence in the fault detection of rolling element bearings: a review’, Journal of Vibroengineering, vol. 24, no. 6, pp. 1027–1055, Sep. 2022, doi: 10.21595/jve.2022.22366. [CrossRef] [Google Scholar]
  2. S. Zhang, S. Zhang, B. Wang, and T. G. Habetler, ‘Machine Learning and Deep Learning Algorithms for Bearing Fault Diagnostics -- A Comprehensive Review’, Jan. 2019, doi: 10.1109/ACCESS.2020.2972859. [Google Scholar]
  3. M. Hakim, A. A. B. Omran, A. N. Ahmed, M. Al-Waily, and A. Abdellatif, ‘A systematic review of rolling bearing fault diagnoses based on deep learning and transfer learning: Taxonomy, overview, application, open challenges, weaknesses and recommendations’, Ain Shams Engineering Journal, vol. 14, no. 4. Ain Shams University, Apr. 05, 2023. doi: 10.1016/j.asej.2022.101945. [CrossRef] [MathSciNet] [Google Scholar]
  4. S. Zhang, S. Zhang, B. Wang, and T. G. Habetler, ‘Deep Learning Algorithms for Bearing Fault Diagnosticsx - A Comprehensive Review’, IEEE Access, vol. 8. Institute of Electrical and Electronics Engineers Inc., pp. 29857–29881, 2020. doi: 10.1109/ACCESS.2020.2972859. [CrossRef] [Google Scholar]
  5. M. Mohiuddin and M. S. Islam, ‘Rolling Element Bearing Faults Detection and Classification Technique Using Vibration Signals †', Engineering Proceedings, vol. 27, no. 1, 2022, doi: 10.3390/ecsa-9-13339. [Google Scholar]
  6. S. R. Saufi, Z. A. Bin Ahmad, M. S. Leong, and M. H. Lim, ‘Challenges and opportunities of deep learning models for machinery fault detection and diagnosis: A review’, IEEE Access, vol. 7. Institute of Electrical and Electronics Engineers Inc., pp. 122644–122662, 2019. doi: 10.1109/ACCESS.2019.2938227. [CrossRef] [Google Scholar]
  7. C. Weng, B. Lu, Q. Gu, and X. Zhao, ‘A novel hierarchical transferable network for rolling bearing fault diagnosis under variable working conditions’, NonlinearDyn, vol. 111, no. 12, pp. 11315–11334, Jun. 2023, doi: 10.1007/s11071-023-08405-x. [Google Scholar]
  8. X. Liu, X. Zhao, and K. He, ‘Feasibility Study of the GST-SVD in Extracting the Fault Feature of Rolling Bearing under Variable Conditions’, Chinese Journal of Mechanical Engineering (English Edition), vol. 35, no. 1, Dec. 2022, doi: 10.1186/s10033-022-00806-0. [Google Scholar]
  9. B. Yang and H. Sun, ‘A zero-shot learning fault diagnosis method of rolling bearing based on extended semantic information under unknown conditions’, Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 45, no. 1, Jan. 2023, doi: 10.1007/s40430-022-03965-2. [Google Scholar]
  10. R. Zhang and Y. Gu, ‘A Transfer Learning Framework with a One-Dimensional Deep Subdomain Adaptation Network for Bearing Fault Diagnosis under Different Working Conditions’, Sensors, vol. 22, no. 4, Feb. 2022, doi: 10.3390/s22041624. [Google Scholar]
  11. X. Liu, H. Huang, and J. Xiang, ‘A personalized diagnosis method to detect faults in a bearing based on acceleration sensors and an fem simulation driving support vector machine’, Sensors (Switzerland), vol. 20, no. 2, Jan. 2020, doi: 10.3390/s20020420. [Google Scholar]
  12. Q. Lu, X. Shen, X. Wang, M. Li, J. Li, and M. Zhang, ‘Fault Diagnosis of Rolling Bearing Based on Improved VMD and KNN’, MathProblEng, vol. 2021, 2021, doi: 10.1155/2021/2530315. [Google Scholar]
  13. M. Senthamil Selvi and S. Jansi Rani, ‘Classification of Admission Data Using Classification Learner Toolbox’, in Journal of Physics: Conference Series, IOP Publishing Ltd, Aug. 2021. doi: 10.1088/1742–6596/1979/1/012043. [Google Scholar]
  14. Case School of Engineering, ‘Bearing Data Center’, Case Western Reserve University Bearing Data Center. Accessed: Sep. 10, 2023. [Online]. Available: https://engineering.case.edu/bearingdatacenter [Google Scholar]
  15. N. Fathiah Waziralilah, A. Abu, M. H. Lim, L. K. Quen, and A. Elfakharany, ‘Bearing fault diagnosis employing Gabor and augmented architecture of convolutional neural network’, Journal of Mechanical Engineering and Sciences, vol. 13, no. 3, pp. 5689–5702, 2019, doi: 10.15282/jmes.13.3.2019.29.0455. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.