Open Access
Issue
ITM Web Conf.
Volume 63, 2024
1st International Conference on Advances in Machine Intelligence, and Cybersecurity Technologies (AMICT2023)
Article Number 01013
Number of page(s) 9
DOI https://doi.org/10.1051/itmconf/20246301013
Published online 13 February 2024
  1. N. Aspert, Non-linear subdivision of univariate signals and discrete surfaces, Ph.D. thesis, Ecole Polytechnique Fed erale de Lausanne, Lausanne, Switzerland, (2003). [Google Scholar]
  2. S. Hashmi, G. Mustafa, Estimating error bounds for quaternary subdivision schemes, Journal of Mathematical Analysis and Applications, 358, 159–167, (2009). [CrossRef] [Google Scholar]
  3. A. Ghaffar, G. Mustafa and K. Qin, The 4-point a-ary approximating subdivision scheme, Open Journal of Applied Sciences, 3, 106–111, (2013). [Google Scholar]
  4. S. Amat and J. Liandrat, On a nonlinear 4-point quaternary approximating subdivision scheme eliminating the Gibbs phenomenon, SeMA Journal, 62, 15–25, (2013). [CrossRef] [Google Scholar]
  5. K. Pervez, Shape preservation of the stationary 4-point quaternary subdivision schemes, Communications in Mathematics and Applications, vol. (3): 3, 249–264, (2018). [Google Scholar]
  6. G. Mustafa, M. Asghar, S. Ali, A. Qamar J-B Liu, The family of multiparameter quaternary subdivision schemes, Journal of Mathematics, Volume 2021, Article ID 4732464, 12 pages, (2021). [Google Scholar]
  7. G. Mustafa and F. Khan, A new 4-point C3 quaternary approximating subdivision scheme, Abstract and Applied Analysis, Volume 2009 | Article ID 301967, (2009). [Google Scholar]
  8. S. S. Siddiqi, M. Younis, The m-point quaternary approximating subdivision schemes, American Journal of Computational Mathematics, 3, 6–10, (2013). [CrossRef] [Google Scholar]
  9. A. Nawaz, A. Ghaffar, F. Khan, S.A.A. Karim, A new 7-point quaternary approximating subdivision scheme. In: Abdul Karim, S.A. (eds) Intelligent Systems Modeling and Simulation II. Studies in Systems, Decision and Control, vol 444. Springer, Cham. (2022). [Google Scholar]
  10. H. T. Tariq, R. Hameed G. Mustafa, A study on the class of non-symmetric 3-point relaxed quaternary subdivision schemes, IEEE Access 10:1–1, (2022). [Google Scholar]
  11. Karim, S.A.A. Rational bi-quartic spline with six parameters for surface interpolation with application in image enlargement. IEEE Access 2020, 8, 115621–115633. https://doi.org/10.1109/ACCESS.2020.3002387. [CrossRef] [Google Scholar]
  12. Karim, S.A.A.; Saaban, A.; Nguyen, V.T. Scattered data interpolation using quartic triangular patch for shape-preserving interpolation and comparison with mesh-free methods. Symmetry 2020, 12, 1071. https://doi.org/10.3390/sym12071071. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.