Open Access
ITM Web Conf.
Volume 63, 2024
1st International Conference on Advances in Machine Intelligence, and Cybersecurity Technologies (AMICT2023)
Article Number 01023
Number of page(s) 7
Published online 13 February 2024
  1. K. Kalair, C. Connaughton, Transp. Res. Part C Emerg. Technol. 127, 103178 (2021) [CrossRef] [Google Scholar]
  2. R. Ravish, S. R. Swamy, Transp. Telecommun. 22, 163–182 (2021) [Google Scholar]
  3. M. W. Ei Leen, N. H. A. Jafry, N. M. Salleh, H. Hwang, N. A. Jalil, Mitigating Traffic Congestion in Smart and Sustainable Cities Using Machine Learning: A Review. in Proceedings of International Conference on Computational Science and Its Applications, ICCSA, 3–6 July 2023, Athens, Greece (2023) [Google Scholar]
  4. M. A. AlAttar, N. Z. Al-Mutairi, Int. J. Crashworthiness 26, 258–269 (2021) [CrossRef] [Google Scholar]
  5. M. A. Fattah, S. R. Morshed, A. A. Kafy, Transp. Eng. 9, 100122 (2022) [CrossRef] [Google Scholar]
  6. J. Lu, B. Li, H. Li, A. Al-Barakani, Cities 108, 102974 (2021) [CrossRef] [Google Scholar]
  7. N. Abdull, M. Yoneda, Y. Shimada, Air Qual. Atmos. Health 13, 731–738 (2020) [CrossRef] [Google Scholar]
  8. H. Chang, L. Li, J. Huang, Q. Zhang, K. S. Chin, Accid. Anal. Prev. 169, 106618 (2022) [CrossRef] [Google Scholar]
  9. S. Sánchez González, F. Bedoya-Maya, A. Calatayud, Sustainability 13, 7500 (2021) [CrossRef] [Google Scholar]
  10. D. Albalate, X. Fageda, Transp. Policy 105, 145–152 (2021) [CrossRef] [Google Scholar]
  11. S. J. Kamble, M. R. Kounte, Procedia Comput. Sci. 171, 2235–2241 (2020) [CrossRef] [Google Scholar]
  12. A. Boukerche, J. Wang, Comput. Netw. 181, 107530 (2020) [CrossRef] [Google Scholar]
  13. R. de la Torre, C. G. Corlu, J. Faulin, B. S. Onggo, A. A. Juan, Sustainability 13, 1551 (2021) [CrossRef] [Google Scholar]
  14. Y. Berhanu, E. Alemayehu, D. Schröder, J. Adv. Transp. 2023, 6643412 (2023) [Google Scholar]
  15. E. Dilek, M. Dener, Sensors 23, 2938 (2023) [CrossRef] [Google Scholar]
  16. K. Tsolaki, T. Vafeiadis, A. Nizamis, D. Ioannidis, D. Tzovaras, ICT Express 9, 284–295 (2023) [CrossRef] [Google Scholar]
  17. A. Liberati, D. G. Altman, J. Tetzlaff, C. Mulrow, P. C. Gøtzsche, J. P. Ioannidis, M. Clarke, P. J. Devereaux, J. Kleijnen, D. Moher, J. Clin. Epidemiol 62, e1–e34 (2009) [Google Scholar]
  18. Z. Wang, Z. Li, Z. Li, Y. Xu, F. Qi, J. Kong, Comput. Secur. 132, 103362 (2023) [CrossRef] [Google Scholar]
  19. S. Abbas, M. O. Malik, A. R. Javed, S. P. Hong, Electronics 12, 2072 (2023) [CrossRef] [Google Scholar]
  20. X. Peng, Y. Lin, Q. Cao, Y. Cen, H. Zhuang, Z. Lin, Traffic Anomaly Detection in Intelligent Transport Applications with Time Series Data using Informer. in Proceedings of IEEE 25th International Conference on Intelligent Transportation Systems, ITSC, 8–12 October 2022, Macau, China (2022) [Google Scholar]
  21. S. Sabour, S. Rao, M. Ghaderi, DeepFlow: Abnormal Traffic Flow Detection Using Siamese Networks. in Proceedings of IEEE International Smart Cities Conference, ISC2, 7–10 September 2021, Manchester, United Kingdom (2021) [Google Scholar]
  22. Y. Ma, Z. Zhang, S. Chen, Y. Yu, K. Tang, IEEE Access 7, 8028-8038 (2019) [CrossRef] [Google Scholar]
  23. K. Meena, A. Viji, J. J. Athanesious, V. Vaidehi, Detecting Abnormal Event in Traffic Scenes using Unsupervised Deep Learning Approach. in Proceedings of International Conference on Wireless Communications Signal Processing and Networking, WiSPNET, 24-26 March 2022, Chennai, India (2019) [Google Scholar]
  24. A. Makhmutova, R. Minnikhanov, M. Dagaeva, I. Anikin, T. Bolshakov, I. Khuziakhmetov, Intelligent Detection of Object’s Anomalies for Road Surveilance Cameras. in Proceedings of International Multi-Conference on Engineering, Computer and Information Sciences, SIBIRCON, 21–22 October 2019, Novosibirsk, Russia (2019) [Google Scholar]
  25. E. E. Mon, H. Ochiai, C. Saivichit, C. Aswakul, Traffic Anomaly Classification by Support Vector Machine with Radial Basis Function on Chula-SSS Urban Road Network. in Proceedings of 9th International Workshop on Computer Science and Engineering, WCSE, 15–17 June 2019, Hong Kong, China (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.