Open Access
Issue |
ITM Web Conf.
Volume 63, 2024
1st International Conference on Advances in Machine Intelligence, and Cybersecurity Technologies (AMICT2023)
|
|
---|---|---|
Article Number | 01025 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/itmconf/20246301025 | |
Published online | 13 February 2024 |
- O. Alshorman et al., “A Review of Artificial Intelligence Methods for Condition Monitoring and Fault Diagnosis of Rolling Element Bearings for Induction Motor,” Shock and Vibration, vol. 2020. Hindawi Limited, (2020). doi: 10.1155/2020/8843759. [CrossRef] [Google Scholar]
- S. Zhang, S. Zhang, B. Wang, and T. G. Habetler, “Deep Learning Algorithms for Bearing Fault Diagnosticsx - A Comprehensive Review,” IEEE Access, vol. 8. Institute of Electrical and Electronics Engineers Inc., pp. 29857–29881, (2020). doi: 10.1109/ACCESS.2020.2972859. [CrossRef] [Google Scholar]
- K. P. Soman, S. Sachin Kumar, N. Mohan, and P. Poornachandran, “Modern methods for signal analysis and its applications,” in Studies in Computational Intelligence, vol. 823, Springer Verlag, (2019), pp. 263–290. doi: 10.1007/978-3-030-12500-4_17. [Google Scholar]
- S. Suh, H. Lee, J. Jo, P. Lukowicz, and Y. O. Lee, “Generative oversampling method for imbalanced data on bearing fault detection and diagnosis,” Applied Sciences (Switzerland), vol. 9, no. 4, (Feb. 2019), doi: 10.3390/app9040746. [Google Scholar]
- K. Zhou, E. Diehl, and J. Tang, “Deep convolutional generative adversarial network with semi-supervised learning enabled physics elucidation for extended gear fault diagnosis under data limitations,” Mech Syst Signal Process, vol. 185, (Feb. 2023), doi: 10.1016/j.ymssp.2022.109772. [CrossRef] [Google Scholar]
- L. Tan, T. Huang, J. Liu, Q. Li, and X. Wu, “Deep adversarial learning system for fault diagnosis in fused deposition modeling with imbalanced data,” Comput Ind Eng, vol. 176, (Feb. 2023), doi: 10.1016/j.cie.2022.108887. [Google Scholar]
- M. Buda, A. Maki, and M. A. Mazurowski, “A systematic study of the class imbalance problem in convolutional neural networks,” Neural Networks, vol. 106, pp. 249–259, (Oct. 2018), doi: 10.1016/j.neunet.2018.07.011. [CrossRef] [Google Scholar]
- W. Jiang, C. Wang, J. Zou, and S. Zhang, “Application of deep learning in fault diagnosis of rotating machinery,” Processes, vol. 9, no. 6, (Jun. 2021), doi: 10.3390/pr9060919. [Google Scholar]
- F. Zhou, S. Yang, H. Fujita, D. Chen, and C. Wen, “Deep learning fault diagnosis method based on global optimization GAN for unbalanced data ✰,” vol. 187, p. 104837, (2020), doi: 10.1016/j.knosys. [Google Scholar]
- J. Luo, L. Zhu, Q. Li, D. Liu, and M. Chen, “Imbalanced fault diagnosis of rotating machinery based on deep generative adversarial networks with gradient penalty,” Processes, vol. 9, no. 10, (Oct. 2021), doi: 10.3390/pr9101751. [Google Scholar]
- W. Zhang, C. Li, G. Peng, Y. Chen, and Z. Zhang, “A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load,” Mech Syst Signal Process, vol. 100, pp. 439–453, (Feb. 2018), doi: 10.1016/j.ymssp.2017.06.022. [CrossRef] [Google Scholar]
- S. Liu, H. Jiang, Y. Wang, K. Zhu, and C. Liu, “A deep feature alignment adaptation network for rolling bearing intelligent fault diagnosis,” Advanced Engineering Informatics, vol. 52, (Apr. 2022), doi: 10.1016/j.aei.2022.101598. [Google Scholar]
- J. Song, C. Meng, and S. Ermon, “Denoising Diffusion Implicit Models,” (Oct. 2020), [Online]. Available: http://arxiv.org/abs/2010.02502 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.