Open Access
Issue
ITM Web Conf.
Volume 64, 2024
2nd International Conference on Applied Computing & Smart Cities (ICACS24)
Article Number 01012
Number of page(s) 16
DOI https://doi.org/10.1051/itmconf/20246401012
Published online 05 July 2024
  1. G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler, “Making the future safe for the past,” ACM SIGPLAN Not., vol. 33, no. 10, pp. 183–200, 1998, doi: 10.1145/286942.286957. [Google Scholar]
  2. A. B. History, “of Time,” no. April 1995, pp. 49–50, 1998. [Google Scholar]
  3. J. M. Abdullah, M. A. Mohammed, and D. A. Muhammed, “International Journal of Multidisciplinary and Current Research Java 8 New Features Improvements and Complications,” no. March, 2020, [Online]. Available: http://ijmcr.com. [Google Scholar]
  4. T. Cramer, R. Friedman, T. Miller, D. Seberger, R. Wilson, and M. Wolczko, “Compiling Java just in time,” IEEE Micro, vol. 17, no. 3, pp. 36–43, 1997, doi: 10.1109/40.591653. [CrossRef] [Google Scholar]
  5. W. S. Beebee and M. Rinard, “An implementation of scoped memory for real-time java,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 2211, pp. 289–305, 2001, doi: 10.1007/3-540-45449-7_21. [Google Scholar]
  6. A. Miyoshi, T. Kitayama, and H. Tokuda, “Implementation and evaluation of real-time Java threads,” Proc. Real-Time Syst. Symp., pp. 166–175, 1997, doi: 10.1109/real.1997.641279. [CrossRef] [Google Scholar]
  7. K. Nilsen, “Real-time programming with Java technologies,” Proc. 4th IEEE Int. Symp. ObjectOriented Real-Time Distrib. Comput. ISORC 2001, pp. 5–12, 2001, doi: 10.1109/ISORC.2001.922812. [Google Scholar]
  8. D. Theriault, “Issues in the Design and Implementation of Act 2,” pp. 1–28, 1983. [Google Scholar]
  9. C. Andreae, Y. Coady, C. Gibbs, J. Noble, J. Vitek, and T. Zhao, “Scoped types and aspects for real-time Java memory management,” Real-Time Syst., vol. 37, no. 1, pp. 1–44, 2007, doi: 10.1007/s11241-007-9024-3. [Google Scholar]
  10. C. A. Lo, Y. T. Lin, and C. C. Wu, “Which programming language should students learn first ? A comparison of Java and python,” Proc. 2015 Int. Conf. Learn. Teach. Comput. Eng. LaTiCE 2015, pp. 225–226, 2015, doi: 10.1109/LaTiCE.2015.15. [Google Scholar]
  11. J. E. Moreira, S. P. Midkiff, M. Gupta, P. Wu, G. Almasi, and P. Artigas, “NINJA: Java for high performance numerical computing,” Sci. Program., vol. 10, no. 1, pp. 19–33, 2002, doi: 10.1155/2002/314103. [Google Scholar]
  12. M. Harkema, D. Quartel, B. M. M. Gijsen, and R. D. Van der Mei, “Performance monitoring of Java applications,” Proc. Int. Work. Softw. Perform., pp. 114–127, 2002, doi: 10.1145/584369.584388. [CrossRef] [Google Scholar]
  13. N. Togashi and V. Klyuev, “Concurrency in Go and Java : Performance analysis,” ICIST 2014 Proc. 2014 4th IEEE Int. Conf. Inf. Sci. Technol., pp. 213–216, 2014, doi: 10.1109/ICIST.2014.6920368. [Google Scholar]
  14. R. Dimpsey, R. Arora, and K. Kuiper, “Java server performance : A case study of building efficient, scalable Jvms,” IBM Syst. J., vol. 39, no. 1, pp. 151–174, 2000, doi: 10.1147/sj.391.0151. [CrossRef] [Google Scholar]
  15. J. Programming, “GSJ : Volume 8, Issue 5, May 2020, Online : ISSN 2320-9186,” vol. 8, no. 5, pp. 1899–1913, 2020. [Google Scholar]
  16. A. Shafi, B. Carpenter, M. Baker, and A. Hussain, “A comparative study of Java and C performance in two large-scale parallel applications,” Concurrency Computation Practice and Experience, vol. 21, no. 15. pp. 1882–1906, 2009, doi: 10.1002/cpe.1416. [CrossRef] [Google Scholar]
  17. Brihadiswaren, G. “A performance comparison between C, Java, and Python.” (2020). [Google Scholar]
  18. J. Martin and H. A. Muller, “Strategies for migration from C to Java,” pp. 200–209, 2002, doi: 10.1109/.2001.914988. [Google Scholar]
  19. G. P. Nikishkov, Y. G. Nikishkov, and V. V. Savchenko, “Comparison of C and Java performance in finite element computations,” Comput. Struct., vol. 81, no. 24–25, pp. 2401–2408, 2003, doi: 10.1016/S0045-7949(03)00301-8. [CrossRef] [Google Scholar]
  20. S. Sharma, “Performance comparison of Java and C ++,” no. February, 2019. [Google Scholar]
  21. A. M. Alnaser, O. AlHeyasat, A. A.-K. Abu-Ein, H. Hatamleh, and A. A. M. Sharadqeh, “Time Comparing between Java and C++ Software,” J. Softw. Eng. Appl., vol. 05, no. 08, pp. 630–633, 2012, doi: 10.4236/jsea.2012.58072. [CrossRef] [Google Scholar]
  22. L. Gherardi, D. Brugali, and D. Comotti, “A Java vs. C++ performance evaluation: A 3D modeling benchmark,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7628 LNAI, pp. 161–172, 2012, doi: 10.1007/978-3-64234327-8_17. [Google Scholar]
  23. R. Vivanco and N. Pizzi, “Computational performance of Java and C++ in processing large biomedical datasets,” Can. Conf. Electr. Comput. Eng., vol. 2, pp. 691–696, 2002, doi: 10.1109/ccece.2002.1013025. [Google Scholar]
  24. R. A. Vivanco and N. J. Pizzi, “Scientific computing with Java and C++ : A case study using functional magnetic resonance neuroimages,” Softw. Pract. Exp., vol. 35, no. 3, pp. 237–254, 2005, doi: 10.1002/spe.633. [CrossRef] [Google Scholar]
  25. J. Kolek and R. Jasek, “A time performance evaluation of the SOMA asynchronous parallel distribution in Java and C#,” Procedia Eng., vol. 100, no. January, pp. 1672–1677, 2015, doi: 10.1016/j.proeng.2015.01.542. [CrossRef] [Google Scholar]
  26. J. Bishop, R. N. Horspool, and B. Worrall, “Experience in integrating Java with C# and. NET,” Concurr. Comput. Pract. Exp., vol. 17, no. 5-6 SPEC. ISS., pp. 663–680, 2005, doi: 10.1002/cpe.858. [CrossRef] [Google Scholar]
  27. B. Ogbuokiri, M. Agu, and O. B.O, “Comparison of python and java for use in instruction in first course in computer programming,” Transylvanian Rev., vol. 24, no. 7, 2016. [Google Scholar]
  28. G. Destefanis, M. Ortu, S. Porru, S. Swift, and M. Marchesi, “A statistical comparison of Java and python software metric properties,” Proc. 7th Int. Work. Emerg. Trends Softw. Metrics, WETSoM 2016, pp. 22–28, 2016, doi: 10.1145/2897695.2897697. [Google Scholar]
  29. I. Cheng, P. Cheng, and S. Tsai, “Rehabilitation System,” pp. 660–661, 2015. [Google Scholar]
  30. A. Varma and S. S. Bhattacharyya, “Java-through-C compilation : An enabling technology for Java in embedded systems,” Proc. -Design, Autom. Test Eur. DATE, vol. 3, pp. 161–166, 2004, doi: 10.1109/DATE.2004.1269224. [Google Scholar]
  31. qizi Sharopova, M.M., 2023. INTRODUCING “PROGRAM CONTROL OPERATORS” IN THE JAVA PROGRAMMING LANGUAGE. Multidisciplinary Journal of Science and Technology, 3(5), pp.222–231. [Google Scholar]
  32. Lu, K.C. and Krishnamurthi, S., 2024. Identifying and Correcting Programming Language Behavior Misconceptions. Proceedings of the ACM on Programming Languages, 8(OOPSLA1), pp.334–361. [CrossRef] [Google Scholar]
  33. Do, N.V. and Mai, T.T., 2023, December. A Knowledge Representation Model for Designing the Knowledge Querying System in Programming Language C/C++. In 2023 RIVF International Conference on Computing and Communication Technologies (RIVF) (pp. 366–371). IEEE. [Google Scholar]
  34. Kumar, A. and Goswami, M., 2023. Performance comparison of instrument automation pipelines using different programming languages. Scientific Reports, 13(1), p.18579. [CrossRef] [Google Scholar]
  35. O. Ali, O.M.A., Kareem, S.W. and Mohammed, A.S., 2022, February. Evaluation of electrocardiogram signals classification using CNN, SVM, and LSTM algorithm: A review. In 2022 8th International Engineering Conference on Sustainable Technology and Development (IEC) (pp. 185–191). IEEE. doi: 10.1109/IEC54822.2022.9807511. [Google Scholar]
  36. Hamaamin, R.A., Wady, S.H. and Sangawi, A.W.K., 2022. COVID-19 Classification based on Neutrosophic Set Transfer Learning Approach. UHD Journal of Science and Technology, 6(2), pp.11–18. https://doi.org/10.21928/uhdjst.v6n2y2022.pp11-18 [CrossRef] [Google Scholar]
  37. Thorgeirsson, S., Weidmann, T.B., Weidmann, K.H. and Su, Z., 2024, March. Comparing Cognitive Load Among Undergraduate Students Programming in Python and the Visual Language Algot. In Proceedings of the 55th ACM Technical Symposium on Computer Science Education V. 1 (pp. 1328–1334). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.