Open Access
Issue |
ITM Web Conf.
Volume 64, 2024
2nd International Conference on Applied Computing & Smart Cities (ICACS24)
|
|
---|---|---|
Article Number | 01020 | |
Number of page(s) | 20 | |
DOI | https://doi.org/10.1051/itmconf/20246401020 | |
Published online | 05 July 2024 |
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. (2021), 71, 209–249. [CrossRef] [PubMed] [Google Scholar]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, (2022). CA Cancer J. Clin. (2022), 72, 7–33. [CrossRef] [Google Scholar]
- Leão, D.C.M.R.; Pereira, E.R.; Pérez-Marfil, M.N.; Silva, R.M.C.R.A.; Mendonça, A.B.; Rocha, R.C.N.P.; García-Caro, M.P. The Importance of Spirituality for Women Facing Breast Cancer Diagnosis: A Qualitative Study. Int. J. Environ. Res. Public Health (2021), 18, 6415. [CrossRef] [Google Scholar]
- Subashini, T.S.; Ramalingam, V.; Palanivel, S. Breast mass classification based on cytological patterns using RBFNN and SVM. Expert Syst. Appl. (2009), 36, 5284–5290. [CrossRef] [MathSciNet] [Google Scholar]
- Abdar, M.; Zomorodi-Moghadam, M.; Zhou, X.; Gururajan, R.; Tao, X.; Barua, P.D.; Gururajan, R. A new nested ensemble technique for automated diagnosis of breast cancer. Pattern Recognit. Lett. (2020), 132, 123–131. [CrossRef] [Google Scholar]
- Rasool, A.; Tao, R.; Kashif, K.; Khan, W.; Agbedanu, P.; Choudhry, N. Statistic Solution for Machine Learning to Analyze Heart Disease Data. In Proceedings of the (2020) 12th International Conference on Machine Learning and Computing, Shenzhen, China, 15-17 February (2020); pp. 134–139. [Google Scholar]
- McWilliam, A.; Faivre-Finn, C.; Kennedy, J.; Kershaw, L.; Van Herk, M.B. Data mining identifies the base of the heart as a dose-sensitive region affecting survival in lung cancer patients. Int. J. Radiat. Oncol. Biol. Phys. (2016), 96, S48–S49. [CrossRef] [Google Scholar]
- Park, K.H.; Batbaatar, E.; Piao, Y.; Theera-Umpon, N.; Ryu, K.H. Deep Learning Feature Extraction Approach for Hematopoietic Cancer Subtype Classification. Int. J. Environ. Res. Public Health (2021), 18, 2197. [CrossRef] [MathSciNet] [Google Scholar]
- Park, E.Y.; Yi, M.; Kim, H.S.; Kim, H. A Decision Tree Model for Breast Reconstruction of Women with Breast Cancer: A Mixed Method Approach. Int. J. Environ. Res. Public Health (2021), 18, 3579. [CrossRef] [Google Scholar]
- Bicchierai, G.; Di Naro, F.; De Benedetto, D.; Cozzi, D.; Pradella, S.; Miele, V.; Nori, J. A Review of Breast Imaging for Timely Diagnosis of Disease. Int. J. Environ. Res. Public Health (2021), 18, 5509. [CrossRef] [Google Scholar]
- Akay, M.F. Support vector machines combined with feature selection for breast cancer diagnosis. Expert Syst. Appl. (2009), 36, 3240–3247. [CrossRef] [Google Scholar]
- Furey, T.S.; Cristianini, N.; Duffy, N.; Bednarski, D.W.; Schummer, M.; Haussler, D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics (2000), 16, 906–914. [CrossRef] [Google Scholar]
- Zheng, B.; Yoon, S.W.; Lam, S.S. Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms. Expert Syst. Appl. (2014), 41, 1476–1482. [CrossRef] [Google Scholar]
- Seddik, A.F.; Shawky, D.M. Logistic regression model for breast cancer automatic diagnosis. In Proceedings of the (2015) SAI Intelligent Systems Conference (IntelliSys), London, UK, 10-11 November (2015); pp. 150–154. [Google Scholar]
- Mert, A.; Kılıç, N; Bilgili, E.; Akan, A. Breast cancer detection with reduced feature set. Comput. Math. Methods Med. (2015), 2015, 265138. [CrossRef] [Google Scholar]
- Abdar, M.; Yen, N.Y.; Hung, J.C.S. Improving the diagnosis of liver disease using multilayer perceptron neural network and boosted decision trees. J. Med. Biol. Eng. (2018), 38, 953–965. [CrossRef] [Google Scholar]
- Rajaguru, H. Analysis of decision tree and k-nearest neighbor algorithm in the classification of breast cancer. Asian Pac. J. Cancer Prev. APJCP (2019), 20, 3777. [CrossRef] [Google Scholar]
- Mushtaq, Z.; Yaqub, A.; Sani, S.; Khalid, A. Effective K-nearest neighbor classifications for Wisconsin breast cancer data sets. J. Chin. Inst. Eng. (2020), 43, 80–92. [CrossRef] [Google Scholar]
- Kamyab, M.; Tao, R.; Mohammadi, M.H. Sentiment Analysis on Twitter. In Proceedings of the 2018 International Conference on Artificial Intelligence and Virtual Reality—AIVR (2018), Taichung, Taiwan, 10-12 December (2018). [Google Scholar]
- Brause, R.W. Medical analysis and diagnosis by neural networks. In Proceedings of the International Symposium on Medical Data Analysis, Madrid, Spain, 8-9 October (2001); Springer: Berlin/Heidelberg, Germany, (2001); pp. 1–13. [Google Scholar]
- Huang, C.L.; Liao, H.C.; Chen, M.C. Prediction model building and feature selection with support vector machines in breast cancer diagnosis. Expert Syst. Appl. (2008), 34, 578–587. [CrossRef] [Google Scholar]
- Polat, K.; Günes¸, S. Breast cancer diagnosis using least square support vector machine. Digit. Signal Process. (2007), 17, 694–701. [CrossRef] [Google Scholar]
- Prasad, Y.; Biswas, K.K.; Jain, C.K. SVM classifier based feature selection using GA, ACO and PSO for siRNA design. In Proceedings of the International Conference in Swarm Intelligence, Beijing, China, 12-15 June (2010); Springer: Berlin/Heidelberg, Germany, (2010); pp. 307–314. [Google Scholar]
- Muzammal, M.; Qu, Q.; Nasrulin, B. Renovating blockchain with distributed databases: An open source system. Future Gener. Comput. Syst. (2019), 90, 105–117. [CrossRef] [Google Scholar]
- Lim, J.; Sohn, J.; Sohn, J.; Lim, D. Breast cancer classification using optimal support vector machine. J. Korea Soc. Health Inform. Stat. (2013), 38, 108–121. [Google Scholar]
- Yang, L.; Xu, Z. Feature extraction by PCA and diagnosis of breast tumors using SVM with DE-based parameter tuning. Int. J. Mach. Learn. Cybern. (2019), 10, 591–601. [CrossRef] [Google Scholar]
- Fu, Y.; Jung, A.W.; Torne, R.V.; Gonzalez, S.; Vöhringer, H.; Shmatko, A.; Gerstung, M. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nat. Cancer (2020), 1, 800–810. [CrossRef] [Google Scholar]
- Durgalakshmi, B.; Vijayakumar, V. Feature selection and classification using support vector machine and decision tree. Comput. Intell. (2020), 36, 1480–1492. [CrossRef] [MathSciNet] [Google Scholar]
- Hazra, A.; Mandal, S.K.; Gupta, A. Study and analysis of breast cancer cell detection using Naïve Bayes, SVM and ensemble algorithms. Int. J. Comput. Appl. (2016), 145, 39–45. [Google Scholar]
- Wang, H.; Zheng, B.; Yoon, S.W.; Ko, H.S. A support vector machine-based ensemble algorithm for breast cancer diagnosis. Eur. J. Oper. Res. (2018), 267, 687–699. [Google Scholar]
- Rasool, A.; Jiang, Q.; Qu, Q.; Kamyab, M.; Huang, M. HSMC: Hybrid Sentiment Method for Correlation to Analyze COVID19 Tweets. In Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery; Springer International Publishing: Berlin/Heidelberg, Germany, (2022); pp. 991–999. [Google Scholar]
- Huang, S.; Cai, N.; Pacheco, P.P.; Narrandes, S.; Wang, Y.; Xu, W. Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genom. Proteom. (2018), 15, 41–51. [Google Scholar]
- Tolles, J.; Meurer, W.J. Logistic regression: Relating patient characteristics to outcomes. JAMA (2016), 316, 533–534. [CrossRef] [Google Scholar]
- Al-Azzam, N.; Shatnawi, I. Comparing supervised and semi-supervised Machine Learning Models on Diagnosing Breast Cancer. Ann. Med. Surg. (2021), 62, 53–64. [CrossRef] [Google Scholar]
- Khandezamin, Z.; Naderan, M.; Rashti, M.J. Detection and classification of breast cancer using logistic regression feature selection and GMDH classifier. J. Biomed. Inform. (2020), 111, 103591. [CrossRef] [Google Scholar]
- Hasan, A.S.M.T.; Sabah, S.; Haque, R.U.; Daria, A.; Rasool, A.; Jiang, Q. Towards Convergence of IoT and Blockchain for Secure Supply Chain Transaction. Symmetry (2022), 14, 64. [CrossRef] [Google Scholar]
- Mejdoub, M.; Amar, C.B. Classification improvement of local feature vectors over the KNN algorithm. Multimed. Tools Appl. (2013), 64, 197–218. [CrossRef] [Google Scholar]
- Yu, Z.; Chen, H.; Liu, J.; You, J.; Leung, H.; Han, G. Hybrid k-nearest neighbor classifier. IEEE Trans. Cybern. (2015), 46, 1263–1275. [Google Scholar]
- Mondéjar-Guerra, V.; Novo, J.; Rouco, J.; Penedo, M.G.; Ortega, M. Heartbeat classification fusing temporal and morphological information of ECGs via ensemble of classifiers. Biomed. Signal Process. Control (2019), 47, 41–48. [CrossRef] [Google Scholar]
- Pławiak, P. Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ECG signals. Swarm Evol. Comput. (2018), 39, 192–208. [CrossRef] [Google Scholar]
- Bunterngchit, C.; Leepaitoon, S. Simulation-Based Approach for Reducing Goods Loading Time. In Proceedings of the (2019) 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), Manama, Bahrain, 15-17 April (2019). [Google Scholar]
- Jafarzadeh, H.; Mahdianpari, M.; Gill, E.; Mohammadimanesh, F.; Homayouni, S. Bagging and Boosting Ensemble Classifiers for Classification of Multispectral, Hyperspectral and PolSAR Data: A Comparative Evaluation. Remote Sens. (2021), 13, 4405. [CrossRef] [Google Scholar]
- Maglogiannis, I.; Zafiropoulos, E.; Anagnostopoulos, I. An intelligent system for automated breast cancer diagnosis and prognosis using SVM based classifiers. Appl. Intell. (2009), 30, 24–36. [CrossRef] [Google Scholar]
- Osman, A.H. An enhanced breast cancer diagnosis scheme based on two-step-SVM technique. Int. J. Adv. Comput. Sci. Appl. (2017), 8, 158–165. [Google Scholar]
- Khan, F.; Khan, M.A.; Abbas, S.; Athar, A.; Siddiqui, S.Y.; Khan, A.H.; Hussain, M. Cloud-based breast cancer prediction empowered with soft computing approaches. J. Healthc. Eng. (2020), 2020, 8017496. [Google Scholar]
- Google Search” [https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning], [https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm] [Google Scholar]
- Sandip S. Panesar, Rhett N. D’Souza, Fang-Cheng Yeh. Machine Learning Versus Logistic Regression Methods for 2-Year Mortality Prognostication in a Small, Heterogeneous Glioma Database Aprril (2019), 10001 [https://doi.org/10.1016/j.wnsx.2019.100012] [Google Scholar]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, (2013). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.