Open Access
Issue
ITM Web Conf.
Volume 64, 2024
2nd International Conference on Applied Computing & Smart Cities (ICACS24)
Article Number 01019
Number of page(s) 17
DOI https://doi.org/10.1051/itmconf/20246401019
Published online 05 July 2024
  1. Ritu, V. Gross national happiness: Meaning, measure and degrowth in a living development alternative. J. Political Ecol. (2017), 24, 476–490. [Google Scholar]
  2. Jad, C.; Irani, A.; Khoury, A. The composite global well-being index (CGWBI): A new multi-dimensional measure of human development. Soc. Indic. Res. (2016), 129, 465–487. [CrossRef] [Google Scholar]
  3. Balestra, C.; Boarini, R.; Tosetto, E. What matters most to people? Evidence from the OECD better life index users’ responses. Soc. Indic. Res. (2018), 136, 907–930. [CrossRef] [Google Scholar]
  4. Chen, Tianqi & Guestrin, Carlos. (2016). XGBoost: A Scalable Tree Boosting System. 785–794. 10.1145/2939672.2939785. [Google Scholar]
  5. Energy-Efficient Classification for Resource-Constrained Biomedical Applications Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Schematic-diagram-of-a-boosted-ensemble-of-decision-trees_fig2_325632132 [accessed 22 Nov, 2020] [Google Scholar]
  6. Hatem, M.N.; Sarhan, S.S.; Rashwan, M.A.A. Enhancing recurrent neural networkbased language models by word tokenization. Human Centric Comput. Inform. Sci. (2018), 8, 1–13 [CrossRef] [Google Scholar]
  7. Aydadenta, H. A clustering approach for feature selection in microarray data classification using random forest. J. Inform. Process. Syst. (2018), 14, 1167–1175. [Google Scholar]
  8. Pregibon, D.; Hastie, T.J. Generalized linear models. In Statistical Models in S; Momirovic, K., Mildner, V., Eds.; Routledge: London, UK, (2017); pp. 195–247. [Google Scholar]
  9. Reiss, Christian & Cossio, Anthony & Santora, Jarrod & Dietrich, Kimberly & Murray, Alison & Mitchell, B & Walsh, Jennifer & Weiss, Elliot & Gimpel, Carla & Jones, Christopher & Watters, George. (2017). Overwinter habitat selection by Antarctic krill under varying sea-ice conditions: Implications for top predators and fishery management. Marine Ecology Progress Series. 568. 1–16. 10.3354/meps12099. [CrossRef] [Google Scholar]
  10. Estoque, R.C.; Togawa, T.; Ooba, M.; Gomi, K.; Nakamura, S.; Hijioka, Y.; Kameyama, Y. A review of quality of life (QOL) assessments and indicators: Towards a “QOL-Climate” assessment framework. Ambio (2018), 1–20. [Google Scholar]
  11. Zhang, Z.; Lai, Z.; Xu, Y.; Shao, L.; Wu, J.; Xie, G. Discriminative elastic-net regularized linear regression. IEEE Trans. Image Process. (2017), 26, 1466–1481. [CrossRef] [MathSciNet] [Google Scholar]
  12. Moore, S.M.; Diener, E.; Tan, K. Using multiple methods to more fully understand causal relations: Positive affect enhances social relationships. In Handbook of WellBeing Diener; Oishi, S., Tay, L., Eds.; DEF Publishers: Salt Lake City, UT, USA, (2018). [Google Scholar]
  13. M. H. B. A. Alkareem, F. Q. Nasif, S. R. Ahmed, L. D. Miran, S. Algburi, and M. T. ALmashhadany, “Linguistics for Crimes in the World by AI-Based Cyber Security,” 2023 7th International Symposium on Innovative Approaches in Smart Technologies (ISAS), Nov. (2023). [Google Scholar]
  14. S. R. Ahmed Ahmed, I. Ahmed Najm, A. Talib Abdulqader, and K. Basem Fadhil, “Energy improvement using Massive MIMO for soft cell in cellular communication,” IOP Conference Series: Materials Science and Engineering, vol. 928, no. 3, p. 032009, Nov. (2020). [CrossRef] [Google Scholar]
  15. Consoli, S.; Recupero, D. Using FRED for named entity resolution, linking and typing for knowledge base population. Commun. Comput. Inf. Sci. (2015), 548, 40–50. [Google Scholar]
  16. Dridi, A.; Reforgiato Recupero, D. Leveraging semantics for sentiment polarity detection in social media. Int. J. Mach. Learn. Cybern. (2019), 10, 2045–2055. [CrossRef] [Google Scholar]
  17. Carta, S.; Corriga, A.; Ferreira, A.; Podda, A.S.; Recupero, D.R. A multi-layer and multi-ensemble stock trader using data mining and deep reinforcement learning. Appl. Intell. 2020, 1–17. [Google Scholar]
  18. Barra, S.; Carta, S.M.; Corriga, A.; Podda, A.S.; Recupero, D.R. Data mining and time series-to-image encoding for financial forecasting. IEEE/CAA J. Autom. Sin. (2020), 7, 683–692. [CrossRef] [Google Scholar]
  19. Carta, S.; Ferreira, A.; Podda, A.S.; Recupero, D.R.; Sanna, A. Multi-DQN: An Ensemble of Deep Q-Learning Agents for Stock Market Forecasting. Expert Syst. Appl. (2020), 164, 113820. [Google Scholar]
  20. Meena, K.S.; Suriya, S. A Survey on Supervised and Unsupervised Learning Techniques. In International Conference on Artificial Intelligence, Smart Grid and Smart City Applications; Springer: Berlin, Germany, (2019); pp. 627–644. [Google Scholar]
  21. Van Engelen, J.E.; Hoos, H.H. A survey on semi-supervised learning. Mach. Learn. (2020), 109, 373–440. [CrossRef] [MathSciNet] [Google Scholar]
  22. Tehrani, A.F.; Ahrens, D. Supervised regression clustering: A case study for fashion products. Int. J. Bus. Anal. (IJBAN) (2016), 3, 21–40 [CrossRef] [Google Scholar]
  23. Pes, B. Ensemble feature selection for high-dimensional data: A stability analysis across multiple domains. Neural Comput. Appl. (2020), 32, 5951–5973. [CrossRef] [Google Scholar]
  24. Jena, P.C.; Kuhoo; Mishra, D.; Pani, S.K. A novel approach for regularization of ensemble learning in classification and regression analysis. Indian J. Public Health Res. Dev. (2018), 9, 1406–1411. [CrossRef] [Google Scholar]
  25. Gayberi, M.; Gunduz Oguducu, S. Popularity Prediction of Posts in Social Networks Based on User, Post and Image Features. In Proceedings of the 11th International Conference on Management of Digital EcoSystems, Limassol, Cyprus, 12-14 November (2019); pp. 9–15. [Google Scholar]
  26. De, S.; Maity, A.; Goel, V.; Shitole, S.; Bhattacharya, A. Predicting the Popularity of Instagram Posts for a Lifestyle Magazine Using Data mining. In 2017 2nd International Conference on Communication Systems, Computing and IT Applications (CSCITA), Mumbai, India, 7-8 April (2017). [Google Scholar]
  27. Hong, L.; Dan, O.; Davison, B.D. Predicting popular messages in twitter. In Proceedings of the 20th International Conference Companion on World Wide Web, Hyderabad, India, 28 March–1 April (2011); pp. 57–58 [Google Scholar]
  28. Hoang, T.B.N.; Mothe, J. Predicting information diffusion on Twitter–Analysis of predictive features. J. Comput. Sci. (2018), 28, 257–264. [CrossRef] [Google Scholar]
  29. Rao, P.G.; Venkatesha, M.; Kanavalli, A.; Shenoy, P.D.; Venugopal, K. A micromodel to predict message propagation for twitter users. In Proceedings of the 2018 International Conference on Data Science and Engineering (ICDSE), Kochi, India, 7-9 August (2018); pp. 1–5. [Google Scholar]
  30. Naseri, M.; Zamani, H. Analyzing and predicting news popularity in an instant messaging service. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, France, 21-25 July (2019); pp. 1053–1056. [Google Scholar]
  31. S. R. Ahmed, A. K. Ahmed, and S. J. Jwmaa, “Analyzing The Employee Turnover by Using Decision Tree Algorithm,” 2023 5th International Congress on HumanComputer Interaction, Optimization and Robotic Applications (HORA), Jun. (2023). [Google Scholar]
  32. N. Z. Mahmood, S. R. Ahmed, A. F. Al-Hayaly, S. Algburi and J. Rasheed, “The Evolution of Administrative Information Systems: Assessing the Revolutionary Impact of Artificial Intelligence,” 2023 7th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkiye, (2023), pp. 1–7. [Google Scholar]
  33. Peláez, J.I.; Martínez, E.A.; Vargas, L.G. Products and services valuation through unsolicited information from social media. Soft Comput. (2020), 24, 1775–1788. [CrossRef] [Google Scholar]
  34. Alduaiji, N.; Datta, A.; Li, J. Influence propagation model for clique-based community detection in social networks. IEEE Trans. Comput. Soc. Syst. (2018), 5, 563–575. [CrossRef] [Google Scholar]
  35. Boratto, L.; Carta, S. The rating prediction task in a group recommender system that automatically detects groups: Architectures, algorithms, and performance evaluation. J. Intell. Inf. Syst. (2015), 45, 221–245. [CrossRef] [Google Scholar]
  36. L. I. Khalaf, S. A. Aswad, S. R. Ahmed, B. Makki, and M. R. Ahmed, “Survey On Recognition Hand Gesture By Using Data Mining Algorithms,” 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Jun. (2022). [Google Scholar]
  37. L. I. Khalaf, S. A. Aswad, S. R. Ahmed, B. Makki, and M. R. Ahmed, “Survey On Recognition Hand Gesture By Using Data Mining Algorithms,” 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Jun. (2022). [Google Scholar]
  38. B. T. Yaseen, S. Kurnaz, and S. R. Ahmed, “Detecting and Classifying Drug Interaction using Data mining Techniques,” 2022 International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Oct. (2022). [Google Scholar]
  39. S. Rashid, A. Ahmed, I. Al Barazanchi, A. Mhana, and H. Rasheed, “Lung cancer classification using data mining and supervised learning algorithms on multidimensional data set,” vol. 7, no. 2, pp. 438–447, (2019). [Google Scholar]
  40. Awad, O. F., Sulaiman, S. K., & Alshmeel, G. H. A. (2023, October). Anomaly Detection and Security Enhancement Through Machine Learning in Administrative Information Systems. In 2023 7th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) (pp. 1–8). IEEE. [Google Scholar]
  41. Guron, A. T., Anwer, M. A., Sulaiman, S. K., & AbdulSamad, S. J. (2023). Classification of the cause of eye impairment using different kinds of machine learning algorithms. Passer Journal of Basic and Applied Sciences, 5(2), 410–416. [CrossRef] [Google Scholar]
  42. Sulaiman, S. K., & Ismael, Y. S. (2022). Machine Learning-Based Personal Signature Recognition Model. NeuroQuantology, 20(10), 2170. [Google Scholar]
  43. Zhou, Y.; Wu, Z.; Zhou, Y.; Hu, M.; Yang, C.; Qin, J. Exploring Popularity Predictability of Online Videos With Fourier Transform. IEEE Access (2019), 7, 41823–41834 [CrossRef] [Google Scholar]
  44. Chaipornkaew, Piyanuch & Prexawanprasut, Takorn. (2019). A Prediction Model for Human Happiness Using Machine Learning Techniques. 33–37. 10.1109/ICSITech46713.2019.8987513. [Google Scholar]
  45. Aich, Satyabrata & Choi, Ki-Won. (2018). A Machine Learning Approach to Predict Happiness Based on Sentiment Analysis of Twitter Data [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.