Open Access
Issue
ITM Web Conf.
Volume 65, 2024
International Conference on Multidisciplinary Approach in Engineering, Technology and Management for Sustainable Development: A Roadmap for Viksit Bharat @ 2047 (ICMAETM-24)
Article Number 01003
Number of page(s) 12
Section Mechanical Engineering
DOI https://doi.org/10.1051/itmconf/20246501003
Published online 16 July 2024
  1. M. Hofstetter, D. Lechleitner, M. Hirz, M. Gintzel, A. Schmidhofer (2018). Multi-Objective System Design Synthesis for Electric Powertrain Development. 2018 IEEE Transportation and Electrification Conference and Expo, ITEC 2018, 274–279. https://doi.org/10.1109/ITEC.2018.8450113 [Google Scholar]
  2. Patil M., Ramkumar P., & Shankar K. (2019). Multi objective optimization of the two stage helical gearbox with tribological constraints. Mechanism and Machine Theory, Elsevier Science Limited, 138, 38–57. https://www.sciencedirect.com/science/article/abs/pii/S0094114X19302265 [CrossRef] [Google Scholar]
  3. S. Padmanabhan, V. Srinivasa Raman, M. Chandrasekaran (2014). Optimisation of gear reducer using evolutionary algorithm. Materials Research Innovations, W. S. Maney & Son Ltd, 18(1), 378–383. https://doi.org/10.1179/1432891714Z.000000000983 [Google Scholar]
  4. Aditya K Nimbalkar, Y B Chaudhary (2016). Optimization of Stiffeners of Differential Gearbox Casing by Vibration and Stress Analysis, International Engineering Research Journal, 7(30), 1425–1430, http://www.ierjournal.org/pupload/mitpgcon/1425-1430.pdf [Google Scholar]
  5. Zhengyan Z., Dingfang C., Yuewei B., Zhumin Y. and Min F. (2009). The optimization design of triple gear-box assembled with spiral-bevel and helical-spur gears. IEEE 10th International Conference on Computer-Aided Industrial Design & Conceptual Design, 2078–2081. http://dx.doi.org/10.1109/CAIDCD.2009.5374903 [Google Scholar]
  6. Yadav, R. S., Gambhire, V. R., Patil, P. J., & Department of Mechanical Engineering, TKIET Warananagar, Kolhapur, India. (2019). Optimization of three wheeler differential gearbox casing using modal and stress analysis. Journal of Emerging Technologies and Innovative Research, 6(5). https://www.jetir.org/papers/JETIR1905418.pdf [Google Scholar]
  7. Miryam B. Sanchez, Jose I. Pedrero, Miguel Pleguezuelos (2013). Critical stress and load conditions for bending calculations of involute spur and helical gears. International Journal of Fatigue, 48, 28–38. https://doi.org/10.1016/j.ijfatigue.2012.11.015 [CrossRef] [Google Scholar]
  8. S. Jyothirmai, R. Ramesh, T. Swarnalatha, D. Renuka (2014). A Finite Element Approach to Bending, Contact & Fatigue Stress Distribution in Helical Gear Systems. Procedia Materials Science, Elsevier, 6(Icmpc), 907–918. https://doi.org/10.1016/j.mspro.2014.07.159 [CrossRef] [Google Scholar]
  9. Ashwani Kumara, Himanshu Jaiswala, Avichal Pandeya, Pravin P Patil (2014). Free Vibration Analysis of Truck Transmission Housing Based on FEA. Procedia Materials Science, Elsevier, 6(Icmpc), 1588–1592. https://doi.org/10.1016/j.mspro.2014.07.141 [CrossRef] [Google Scholar]
  10. B. Venkatesha, S.V. Prabhakar, Vattikutia, S. Deva Prasada (2014). Investigate the Combined Effect of Gear Ratio, Helix Angle, Facewidth and Module on Bending and Compressive Stress of Steel Alloy Helical Gear. Procedia Materials Science, 6(Icmpc), 1865–1870. https://doi.org/10.1016/j.mspro.2014.07.217 [CrossRef] [Google Scholar]
  11. Xiaohe Deng (2019). Analysis and prediction of gear fatigue life. IOP Conference Series: Earth and Environmental Science, 103, 58–68. https://doi.org/10.1088/1755-1315/252/2/022024 [Google Scholar]
  12. Deepak K. Pandey, Hee Chang Lim (2020). Pinion Failure Analysis of a Helical Reduction Gearbox in a Kraft Process. Applied Sciences, MDPI Journal, 10 (2935), 1–13. https://doi.org/10.3390/app10082935 [Google Scholar]
  13. Santosh S. Patila, Saravanan Karuppanana Ivana Atanasovskab, Azmi Abdul Wahaba (2014). Contact stress analysis of helical gear Pairs , including frictional Coefficients. International Journal of Mechanical Sciences, 85(August), 205–211. https://doi.org/10.1016/j.ijmecsci.2014.05.01 [CrossRef] [Google Scholar]
  14. Akilesh M., Ganesan K., Soundararajan R., Dinesh G., & Charan A. (2019). Numerical Simulation of Vibration and Structural Born Noise Analysis of Industrial Gearbox. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8(7), 608–614. https://www.researchgate.net/publication/339815322Numerical_Simulation_of_Vibration_and_Structural_Born_Noise_Analysis_of_Industrial_Gearbox [CrossRef] [Google Scholar]
  15. Ashish N Taywade, V G Arajpure (2014). Design and Development of Nylon 66 Plastic Helical Gears in Automobile Application, International Journal of Engineering Research & Technology (IJERT), 3(9), 1330–1334, https://www.ijert.org/design-and-development-of-nylon-66-plastic-helical-gears-in-automobile-application [Google Scholar]
  16. M Mahesh Babu, Rameswara Reddy (2015). Stress Analysis of Gearbox Casing Using ANSYS Workbench, International Journal of Science & Research (IJSR), 4(7), 525–527, https://www.ijsr.net/get_count.php?paper_id=SUB156381 [CrossRef] [Google Scholar]
  17. Nitin Kapoor, Virender Upneja, Ram Bhool, Puneet Katyal (2014). Design and Stress Strain Analysis of Composite Differencial Gearbox, International Journal of Science, Engineering and Technology Research (IJSETR), 34(4), 165–167, http://dx.doi.org/10.14445/22315381/IJETT-V34P234 [Google Scholar]
  18. Shivaji Gawali, Harshal P Rahate, Rahul V Borade (2017). Effect of Coefficient of Asymmetry on Strength and Contact Ratio of Asymmetric Helical Gear, International Journal of scientific Research in Science, Engineering and Technology (IJSRSET), 3(1), 144–150, https://doi.org/10.32628/IJSRSET173135 [Google Scholar]
  19. S. Mahendran, K M. Eazhil, L. Senthil Kumar (2014). Design and Analysis of Composite Helical Gear, Internatiional Journal of Research of Science (IJRS), 1(6), 42–53, https://www.rsisinternational.org/Issue6/42-53.pdf [Google Scholar]
  20. G Raghavendra Setty, Dr. Irfan A G, Dayananda Totar, Santhosh Naik (2016). Modeling and Dynamic Analysis of Gear Box Casing Using Finite Element Analysis, International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET), 5(6), 11835–11847, http://www.ijirset.com/upload/2016/june/303_MODELING_iferp.pdf [Google Scholar]
  21. Rahi Jain, Pratik Goyal (2016). Design and analysis of gearbox using spur gear and eliminating the differential unit, International Journal of Mechanical Engineering and Technology (IJMET), 8(5), 175–185, https://www.rsisinternational.org/Issue6/42-53.pdf [Google Scholar]
  22. Tarun Gupta, Neeraj Patel (2016). Methodology for Designing a Gearbox and its Analysis. International Journal of Engineering Research and Research (IJERT), 05(01), 780–792, https://www.ijert.org/research/methodology-for-designing-a-gearbox-and-its-analysis-IJERTV5IS010593.pdf [Google Scholar]
  23. Neeraj Patel, Tarun Gupta, Aniket Wankhede, Vilas Warudkar (2017). Design and Optimization of 2 Stage Reduction Gearbox. International Journal of Engineering Development and Research (IJEDR), 10(1), 780–792, https://www.ijedr.org/viewfull.php?&p_id=IJEDR1702095 [Google Scholar]
  24. Kunal Menavlikar, Snehal Wadhokar, Arbaz Shaikh, Aniruddha Kulkarni (2019). Design and Topology Optimization of two stage Gearbox for All Terrain Vehicles. International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET), 8(2), 927–935, http://www.ijirset.com/upload/2019/february/46_Design.pdf [Google Scholar]
  25. J. Venkatesh, P. B. G. S. N. Murthy (2014). Design and Structural Analysis of High Speed Helical Gear Using Ansys. International Journal of Engineering Research and Applications (IJERA), 4(3), 01–05, http://www.ijera.com/papers/Vol4_issue3/Version%202/A43020105.pdf [Google Scholar]
  26. Mitesh Patel, Prof A V Patil (2015). Study about stress and deformation of 3 Stage helical gearbox casing. International Journal of Advance Research in Engineering, Science & Technology (IJAREST), 02(07), 65–71, http://www.ijarest.com/papers/finished_papers/1507141359111.pdf [Google Scholar]
  27. P D Patel, D S Shah (2012). Steady State Thermal Stress Analysis of Gearbox using FEM. International Journal of Mechanical and Industrial Engineering (IJMIE), 2(4), 26–30, http://dx.doi.org/10.47893/IJMIE.2013.11394 [Google Scholar]
  28. Jerin Sabu, Dr. Y V K S Rao, Alen John, Rajeev V. R (2014). Finite Element Method for the Nonlinear Contact Analysis of Helical Gears. International Journal of Research in Advance Technology (IJRAT), 2(4), 20–23, https://www.researchgate.net/publication/265823659_Finite_Element_Model_for_Stress_Analysis_and_Nonlinear_Contact_Analysis_of_Helical_Gears [Google Scholar]
  29. Shashank Pandey, Nikhilesh N. Singh & Dr. Prabhat Kumar Sinha (2017). Modeling, design & analysis of differential gear box and its housing through FEM, Solidwork & Ansys benchwork 14.0. International Journal of Engineering Sciences & Research Technology (IJESRT), 6(7), 887–894, http://www.ijesrt.com/issues%20pdf%20file/Archive-2017/July-2017/125.pdf [Google Scholar]
  30. Ms. Asmita Patil, Mr. Bhoraj Kale, Atharva Bhagade, Chinmay Pimpalkhute, Ashirwad Borkar (2018). Design and Analysis of a gearbox for an all terrain vehicle. International Journal of Innovative Research in Technology (IJIRT), 4(11), 690–701, https://ijirt.org/master/publishedpaper/IJIRT145834_PAPER.pdf [Google Scholar]
  31. Myo Zaw, Aung Ko Latt (2019). Design of Synchromesh Mechanism and Stress Analysis of Gear for Hijet. Iconic Research and Engineering Journal, 2(8), 140–146, https://www.academia.edu/38566662/Design_of_Synchromesh_Mechanism_and_Stress_Analysis_of_Gear_for_Hijet [Google Scholar]
  32. Neeta T Chavan, Gunchita Kaur-Wadhwa, Basavaraj S. Talikoti (2016). Analysis of Gearbox Casing and Effect of Ferquency on Stress and Strain Using FEA. Iconic International Journal of Research in Engineering and Technology (IJRET), 05(10), 251–256, https://ijret.org/volumes/2016v05/i10/IJRET20160510041.pdf [Google Scholar]
  33. R V Nigade, T.A. Jadhav, A.M. Bhide (2012). Vibration Analysis of Gearbox Top Cover. International Journal of Innovations in Engineering and Technology (IJIET), 1(4), 26–33, http://ijiet.com/wp-content/uploads/2013/01/4.pdf [Google Scholar]
  34. Prof. Swapnil J. Patil, Mr. Vipin B. Singh, Mr. Amit M. Pawar (2017). Design and Vibration Analysis for Shaft with Gear Mountings using Finite Element Analysis. International Advanced Research Journal in Science, Engineering and Technology (IARJSET), 4(1), 30–33, https://iarjset.com/upload/2017/si/NCDMETE-2017/IARJSET-NCDMETE%209.pdf [CrossRef] [Google Scholar]
  35. Smita Pawar, Avinash Lavnis (2017). Improvement in design of gearbox housing (Code No : MFO225DR) through static analysis. International Journal of Advance Research, Ideas and Innovations in Technology (IJARIIT), 5(2), 2024–2026, https://www.researchgate.net/publication/332963043_Improvement_in_design_of_gearbox_housing_Code_No_MFO225DR_through_static_analysis [Google Scholar]
  36. Shivshankar Angadi, Prajyot Palande, Anurag Kandke, Pratik Manjari, B.R. Patil (2015). Design and Analysis of Gearbox of an All Terrain Vehicle. International Research Journal of Engineering and Technology (IRJET), 6(5), 392–399, https://blog.irjet.net/archives/V6/i5/IRJET-V6I580.pdf [Google Scholar]
  37. Balasaheb Sahebrao Vikhe (2014). Design and Analysis Of Industrial Gear Box Casing. International Research Journal of Engineering and Technology (IRJET), 03(11), 1379–1383, https://www.irjet.net/archives/V3/i11/IRJET-V3I11263.pdf [Google Scholar]
  38. Ashwani Kumar, Rajat Jain, Pravin P. Patil (2016). Dynamic Analysis of Heavy Vehicle Medium Duty Drive Shaft Using Conventional and Composite Material. IOP Conference Series: Materials Science and Engineering, 149(2016), 42–52, https://iopscience.iop.org/article/10.1088/1757-899X/149/1/012156 [Google Scholar]
  39. Hardial Singh, Deepak Kumar (2020). Effect of face width of spur gear on bending stress using AGMA and ANSYS. International Journal for Simulation and Multidisciplinary Design Optimization (IJSMDO), 11 (2020), 1–8, https://www.ijsmdo.org/articles/smdo/pdf/2020/01/smdo200011.pdf [CrossRef] [EDP Sciences] [Google Scholar]
  40. Saritas M., Golbol O., & Yayla P. (2021). Finite element stress analysis of three stage gearbox. Nigde Omer Halisdemir University Journal of Engineering Sciences, 4(12), 124–127. https://dergipark.org.tr/en/pub/ngumuh/issue/60301/794874 [Google Scholar]
  41. Gandhi R. D. & Patel N. S. (2018). Design, analysis and modification of 3 stage helical gearbox casing using finite element method considering different materials. Proceedings of International Conference on Intelligent Manufacturing and Automation, 99–114. https://link.springer.com/chapter/10.1007/978-981-13-2490-1_10 [Google Scholar]
  42. Patel Mitesh S. (2013). Stress Analysis and Design Modification of 3 stage Helical Gear Box Casing. International Journal for Scientific Research & Development (IJSRD), 1(9), 2027–28. http://ijsrd.com/Article.php?manuscript=IJSRDV1I9086 [Google Scholar]
  43. Bashir Maner, V., M. Mirza, M., & Pawar, S. (2014). Design, Analysis and Optimization for Foot Casing of Gearbox. Proceedings of 3rd IRF International Conference, Goa, India. https://www.digitalxplore.org/up_proc/pdf/73-139996491235-38.pdf [Google Scholar]
  44. Mujiburrahman, K., Saravanakumar, S., Kumar, K. S., Kaviya, J. C., & Krishnaraj, R. (2022). Design and analysis of Eglass gear box housing in tractor and optimization of its design parameters. Materials Today: Proceedings, 49, 3696–3704. https://doi.org/10.1016/j.matpr.2021.10.079 [CrossRef] [Google Scholar]
  45. Korka Z. I., & Gillich N. (2017). Modal Analysis of Helical Gear Pairs with Various Ratios and Helix Angles. Romanian Journal of Acoustics and Vibration, Bucharest, 14(2), 91–96. https://www.researchgate.net/publication/322926900_Modal_Analysis_of_Helical_Gear_Pairs_with_Various_Ratios_and_Helix_Angles [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.