Open Access
Issue
ITM Web Conf.
Volume 65, 2024
International Conference on Multidisciplinary Approach in Engineering, Technology and Management for Sustainable Development: A Roadmap for Viksit Bharat @ 2047 (ICMAETM-24)
Article Number 03010
Number of page(s) 6
Section Computer Engineering and Information Technology
DOI https://doi.org/10.1051/itmconf/20246503010
Published online 16 July 2024
  1. Huseyin Ahmetoglu and Resul Das, A thorough study on the detection of cyber-attacks: Data sets, methodologies, difficulties, and future research directions, Internet of Things, Volume 20, 2022, 100615, ISSN 2542-6605, https://doi.org/10.1016/j.iot.2022.100615. [CrossRef] [Google Scholar]
  2. Umer Farooq, Noshina Tariq, Muhammad Asim, Thar Baker, and Ahmed Al-Shama’s, “Machine learning and the Internet of Things security: Solutions and open challenges,” Journal of Parallel and Distributed Computing, Volume 162, Issue 2, 2022, pp. 89–104, ISSN 0743–7315, doi: 10.1016/j.jpdc.2022.01.015. [CrossRef] [Google Scholar]
  3. N. Mane, A. Verma, & A. Arya (2020, November). a realistic best practice for applying genetic programming to detect cyberattacks. IEEE’s 20th International Symposium on Computational Intelligence and Informatics (CINTI) will take place in 2020. (pp. 71–76). IEEE. [Google Scholar]
  4. Detection of Cyber Attack in Network Using Machine Learning Techniques by Diwakar Reddy M, Bhoomika T Sajjan, Anusha M, Syed Jafar Sadiq B M, and Shambulingappa H S (2021). [Google Scholar]
  5. Sanjay Gaur, Darshanaben Dipakkumar Pandya (2019), Closest Fit Approach for Pattern Designing to Recovered Anomalous Values in Data Mining, 2018 Second World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), 308–312 IEEE Xplore, DOI: 10.1109/WorldS4.2018.8611610 [Google Scholar]
  6. Sanjay Gaur, MS Dulawat (2011), Improved Closest fit Techniques to handle missing Attribute values, Journal of Computer and Mathematical Sciences Vol-2, no-2, 170–398. [Google Scholar]
  7. Y. Wang, G. Zha, R. Li, and S. Yu, “Intrusion Detection Systems in the Era of Big Data: A Review,” IEEE Access, Volume 6, 2018, pp. 68732-68749, DOI: 10.1109/ACCESS.2018.2880687. [Google Scholar]
  8. F. Xiao, “Internet of Things: Security and privacy in a connected world,” Communications of the ACM, Volume 61, Issue 9, 2018, pp. 26-28, DOI: 10.1145/3241035. [MathSciNet] [Google Scholar]
  9. K. K. Singh and N. Sharma, “Survey on Machine Learning Techniques for Intrusion Detection Systems,” International Journal of Advanced Research in Computer and Communication Engineering, Volume 5, Issue 3, 2016, pp. 1035-1038. [Google Scholar]
  10. J. Zhang and M. Zulkernine, “A Machine Learning-Based Intrusion Detection System,” International Journal of Network Security, Volume 8, Issue 2, 2009, pp. 105-111. [Google Scholar]
  11. N. A. Bhuiyan, M. S. A. Hossain, and M. I. A. Aziz, “A Comprehensive Study of Cyber-Physical System and Its Security: Vulnerabilities, Threats, Attacks, and Tools,” IEEE Access, Volume 9, 2021, pp. 29703-29722, DOI: 10.1109/ACCESS.2021.3058525. [Google Scholar]
  12. T. M. Mitchell, “Machine Learning,” McGraw-Hill Education, 1997, ISBN: 978-0070428072. [Google Scholar]
  13. L. Breiman, “Random Forests,” Machine Learning, Volume 45, 2001, pp. 5-32, DOI: 10.1023/A:1010933404324. [Google Scholar]
  14. R. Duda, P. Hart, and D. Stork, “Pattern Classification,” Wiley-Interscience, 2000, ISBN: 978-0471056690. [Google Scholar]
  15. I. Goodfellow, Y. Bengio, and A. Courville, “Deep Learning,” MIT Press, 2016, ISBN: 978-0262035613. [Google Scholar]
  16. M. S. A. Hossain, “IoT and Cloud Computing: A Deep Dive into the Cyber-Physical Systems,” IEEE Transactions on Industrial Informatics, Volume 14, Issue 9, 2018, pp. 4256-4266, DOI: 10.1109/TII.2018.2829996. [Google Scholar]
  17. J. Quinlan, “C4.5: Programs for Machine Learning,” Morgan Kaufmann Publishers Inc., 1993, ISBN: 978-1558602380. [Google Scholar]
  18. N. Cristianini and J. Shawe-Taylor, “An Introduction to Support Vector Machines and Other Kernel-based Learning Methods,” Cambridge University Press, 2000, ISBN: 978-0521780193. [CrossRef] [Google Scholar]
  19. D. Barber, “Bayesian Reasoning and Machine Learning,” Cambridge University Press, 2012, ISBN: 978-0521518147. [CrossRef] [Google Scholar]
  20. T. Hastie, R. Tibshirani, and J. Friedman, “The Elements of Statistical Learning: Data Mining, Inference, and Prediction,” Springer, 2009, ISBN: 978-0387848570. [Google Scholar]
  21. P. Domingos, “The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World,” Basic Books, 2015, ISBN: 978-0465065707. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.