Open Access
Issue
ITM Web Conf.
Volume 65, 2024
International Conference on Multidisciplinary Approach in Engineering, Technology and Management for Sustainable Development: A Roadmap for Viksit Bharat @ 2047 (ICMAETM-24)
Article Number 03012
Number of page(s) 6
Section Computer Engineering and Information Technology
DOI https://doi.org/10.1051/itmconf/20246503012
Published online 16 July 2024
  1. Shahabi, Himan, et al. “Landslide susceptibility mapping in a mountainous area using machine learning algorithms.” Remote Sensing 15.12 (2023): 3112. [CrossRef] [Google Scholar]
  2. Ge, Xuming, et al. “Lightweight landslide detection network for emergency scenarios.” Remote Sensing 15.4 (2023): 1085. [Google Scholar]
  3. Ofli, Ferda, et al. “Landslide detection in real-time social media image streams.” Neural Computing and Applications 35.24 (2023): 17809–17819. [CrossRef] [Google Scholar]
  4. Ghorbanzadeh, Omid, et al. “Landslide detection using deep learning and object-based image analysis.” Landslides 19.4 (2022): 929–939. [CrossRef] [Google Scholar]
  5. D. Martin and S. S. Chai, “A study on development of landslide susceptibility map in malaysia landslide prone areas by using geographic information system (GIS) and machine learning,” in 2022 IEEE 18th International Colloquium on Signal Processing & Applications (CSPA). IEEE, 2022, pp. 386–391. [Google Scholar]
  6. P. Varangaonkar and S. Rode, “Research on efficient landslide prediction approaches using machine learning techniques,” in 2022 5th International Conference on Advances in Science and Technology (ICAST). IEEE, 2022, pp. 64–68 [Google Scholar]
  7. Aslam, Bilal, Adeel Zafar, and Umer Khalil. “Development of integrated deep learning and machine learning algorithm for the assessment of landslide hazard potential.” Soft Computing 25.21 (2021): 13493–13512. [CrossRef] [Google Scholar]
  8. G. Danneels, E. Pirard & H. Havenith, “Automatic landslide detection from remote sensing images using supervised classification methods,” 2007 IEEE International Geoscience & Remote Sensing Symposium, Barcelona, 2007, pp. 3014–3017 [Google Scholar]
  9. Mendez-Astudillo and M. Mendez-Astudillo, “A machine learning approach to monitoring the UHI from GNSS data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–11, 2021. [CrossRef] [Google Scholar]
  10. I. L. Mallika, D. V. Ratnam, S. Raman, and G. Sivavaraprasad, “A new ionospheric model for single frequency GNSS user applications using klobuchar model driven by auto regressive moving average (SAKARMA) method over indian region,” IEEE Access, vol. 8, pp. 54 535–54 553, 2020. [Google Scholar]
  11. A. Siemuri, H. Kuusniemi, M. S. Elmusrati, P. V ̈alisuo, and A. Shamsuzzoha, “Machine learning utilization in GNSS—use cases, challenges and future applications,” in 2021 International Conference on Localization and GNSS (ICL-GNSS). IEEE, 2021, pp. 1–6 [Google Scholar]
  12. T. Gravalon, L. Seoane, G. Ramillien, J. Darrozes, and L. Roblou, “Determination of weather-induced short-term sea level variations by GNSS reflectometry,” Remote Sensing of Environment, vol. 279, p. 113090, 2022 [CrossRef] [Google Scholar]
  13. O. K. Isik, I. Petrunin, G. Inalhan, A. Tsourdos, R. V. Moreno, and R. Grech, “A machine learning based gnss performance prediction for urban air mobility using environment recognition,” in 2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC). IEEE, 2021, pp. 1–5. [Google Scholar]
  14. Alcantara-Ayala, I.: “Hazard assessment of rainfall-induced landsliding in Mexico”, Geomorphology, 61, 19–40, 2004. [CrossRef] [Google Scholar]
  15. Ayalew, L. and Yamagishi, H.: “The application of GIS-based logistic regression for landslide susceptibility mapping in the KakudaYahiko Mountains”, Central Japan, Geomorphology, 65, 15–31, 2005. [CrossRef] [Google Scholar]
  16. Y. Nakagawa, T. Miyauchi, T. Higashino, and M. Okada, “Application of random forest to classify weather observation into rainfall using GNSS receiver,” in 2021 IEEE VTS 17th Asia Pacific Wireless Communications Symposium (APWCS). IEEE, 2021, pp. 1–5. [Google Scholar]
  17. Q. Yan, W. Huang, and C. Moloney, “Neural networks based sea ice detection and concentration retrieval from GNSS-R delay-doppler maps,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 8, pp. 3789–3798, 2017. [CrossRef] [Google Scholar]
  18. G. Danneels, E. Pirard & H. Havenith, “Automatic landslide detection from remote sensing images using supervised classification methods,” 2007 IEEE International Geoscience & Remote Sensing Symposium, Barcelona, 2007, pp. 3014–3017. [Google Scholar]
  19. Blaschke T, “Object based image analysis for remote sensing”. ISPRS J Photogramm Remote Sens 65:2–16, 2010 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.