Open Access
Issue
ITM Web Conf.
Volume 65, 2024
International Conference on Multidisciplinary Approach in Engineering, Technology and Management for Sustainable Development: A Roadmap for Viksit Bharat @ 2047 (ICMAETM-24)
Article Number 03013
Number of page(s) 13
Section Computer Engineering and Information Technology
DOI https://doi.org/10.1051/itmconf/20246503013
Published online 16 July 2024
  1. M. Nishio, H. Matsuo, Y. Kurata, O. Sugiyama, and K. Fujimoto, “Label Distribution Learning for Automatic Cancer Grading of Histopathological Images of Prostate Cancer,” Cancers, vol. 15, no. 5, pp. 1–12, 2023, doi: 10.3390/cancers15051535. [Google Scholar]
  2. A. Ramírez-Mena, E. Andrés-León, M. J. Alvarez-Cubero, A. Anguita-Ruiz, L. J. Martinez-Gonzalez, and J. Alcala-Fdez, “Explainable artificial intelligence to predict and identify prostate cancer tissue by gene expression,” Computer Methods and Programs in Biomedicine, vol. 240, 2023, doi: 10.1016/j.cmpb.2023.107719. [Google Scholar]
  3. A. Naeem, A. H. Khan, S. u din Ayubi, and H. Malik, “Predicting the Metastasis Ability of Prostate Cancer using Machine Learning Classifiers,” Journal of Computing & Biomedical Informatics, vol. 4, no. 02, 2023. [Google Scholar]
  4. L. J. Isaksson et al., “High-performance prediction models for prostate cancer radiomics,” Informatics in Medicine Unlocked, vol. 37, no. December 2022, p. 101161, 2023, doi: 10.1016/j.imu.2023.101161. [CrossRef] [Google Scholar]
  5. A. Muazzam et al., “A Novel Blood Proteomic Signature for Prostate Cancer,” Cancers, vol. 15, no. 4, 2023, doi: 10.3390/cancers15041051. [CrossRef] [Google Scholar]
  6. H. Kamecki et al., “Quantification of Gleason Pattern 4 at MRI-Guided Biopsy to Predict Adverse Pathology at Radical Prostatectomy in Intermediate-Risk Prostate Cancer Patients,” Cancers, vol. 15, no. 22, 2023, doi: 10.3390/cancers15225462. [Google Scholar]
  7. A. Singh, S. Randive, A. Breggia, B. Ahmad, R. Christman, and S. Amal, “Enhancing Prostate Cancer Diagnosis with a Novel Artificial Intelligence-Based Web Application: Synergizing Deep Learning Models, Multimodal Data, and Insights from Usability Study with Pathologists,” Cancers, vol. 15, no. 23, 2023, doi: 10.3390/cancers15235659. [Google Scholar]
  8. M. Oderda et al., “Predictors of Prostate Cancer at Fusion Biopsy: The Role of Positive Family History, Hypertension, Diabetes, and Body Mass Index,” Current Oncology, vol. 30, no. 5, pp. 4957–4965, 2023, doi: 10.3390/curroncol30050374. [CrossRef] [Google Scholar]
  9. P. F. R. Wilson et al., “Self-Supervised Learning with Limited Labeled Data for Prostate Cancer Detection in HighFrequency Ultrasound,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 70, no. 9, pp. 1073–1083, 2023, doi: 10.1109/TUFFC.2023.3297840. [CrossRef] [Google Scholar]
  10. R. Tibrewala et al., “FastMRI Prostate: A Publicly Available, Biparametric MRI Dataset to Advance Machine Learning for Prostate Cancer Imaging.,” ArXiv, 2023, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/37131871%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC10153282 [Google Scholar]
  11. C. Dariane et al., “Micro-ultrasound-guided biopsies versus systematic biopsies in the detection of prostate cancer: a systematic review and meta-analysis,” World Journal of Urology, vol. 41, no. 3, pp. 641–651, 2023, doi: 10.1007/s00345-022-04087-z. [Google Scholar]
  12. B. M. R. International, “Retracted: Identification and Classification of Prostate Cancer Identification and Classification Based on Improved Convolution Neural Network,” BioMed research international, vol. 2023, p. 9804727, 2023, doi: 10.1155/2023/9804727. [Google Scholar]
  13. J. Chen et al., “A transfer learning nomogram for predicting prostate cancer and benign conditions on MRI,” BMC Medical Imaging, vol. 23, no. 1, pp. 1–12, 2023, doi: 10.1186/s12880-023-01163-7. [CrossRef] [Google Scholar]
  14. M. S. Alzboon and M. S. Al-Batah, “Prostate Cancer Detection and Analysis using Advanced Machine Learning,” International Journal of Advanced Computer Science and Applications, vol. 14, no. 8, pp. 388–396, 2023, doi: 10.14569/IJACSA.2023.0140843. [CrossRef] [Google Scholar]
  15. X. Huang, B. Pang, T. Zhang, G. Jia, Y. Wang, and Y. Li, “Improved Prostate Biparameter Magnetic Resonance Image Segmentation Based on Def-UNet,” IEEE Access, vol. 11, no. April, pp. 43089–43100, 2023, doi: 10.1109/ACCESS.2023.3268576. [CrossRef] [Google Scholar]
  16. M. Varan, J. Azimjonov, and B. Macal, “Enhancing Prostate Cancer Classification by Leveraging Key Radiomics Features and Using the Fine-Tuned Linear SVM Algorithm,” IEEE Access, vol. 11, no. August, pp. 88025–88039, 2023, doi: 10.1109/ACCESS.2023.3306515. [CrossRef] [Google Scholar]
  17. L. Zhao et al., “Predicting clinically significant prostate cancer with a deep learning approach: a multicentre retrospective study,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 50, no. 3, pp. 727–741, 2023, doi: 10.1007/s00259-022-06036-9. [CrossRef] [Google Scholar]
  18. T. N. Chu, E. Y. Wong, R. Ma, C. H. Yang, I. S. Dalieh, and A. J. Hung, “Exploring the Use of Artificial Intelligence in the Management of Prostate Cancer,” Current Urology Reports, vol. 24, no. 5, pp. 231–240, 2023, doi: 10.1007/s11934-023-01149-6. [CrossRef] [Google Scholar]
  19. E. Checcucci et al., “Machine-Learning-Based Tool to Predict Target Prostate Biopsy Outcomes: An Internal Validation Study,” Journal of Clinical Medicine, vol. 12, no. 13, 2023, doi: 10.3390/jcm12134358. [Google Scholar]
  20. N. Rabilloud et al., “Deep Learning Methodologies Applied to Digital Pathology in Prostate Cancer: A Systematic Review,” Diagnostics, vol. 13, no. 16, 2023, doi: 10.3390/diagnostics13162676. [CrossRef] [Google Scholar]
  21. S. K. Singh et al., “A novel deep learning-based technique for detecting prostate cancer in MRI images,” Multimedia Tools and Applications, no. 0123456789, 2023, doi: 10.1007/s11042-023-15793-0. [Google Scholar]
  22. Y. Bouslimi, T. Ben Aïcha Gader, and A. K. Echi, “Deep Learning-based Detection, Segmentation of Prostate Cancer from mp-MRI Images,” Electronic Letters on Computer Vision and Image Analysis, vol. 22, no. 1, pp. 52–76, 2023, doi: 10.5565/REV/ELCVIA.1620. [CrossRef] [Google Scholar]
  23. P. E. Akhoondi and M. S. Baghshah, “Semantic Segmentation with Multiple Contradictory Annotations Using a Dynamic Score Function,” IEEE Access, vol. 11, no. June, pp. 64544–64558, 2023, doi: 10.1109/ACCESS.2023.3278275. [CrossRef] [Google Scholar]
  24. L. Hu et al., “Automated deep-learning system in the assessment of MRI-visible prostate cancer: comparison of advanced zoomed diffusion-weighted imaging and conventional technique,” Cancer Imaging, vol. 23, no. 1, pp. 1–12, 2023, doi: 10.1186/s40644-023-00527-0. [CrossRef] [MathSciNet] [Google Scholar]
  25. V. Panebianco and B. Turkbey, “Magnetic resonance imaging for prostate cancer recurrence: it’s time for precision diagnostic with Prostate Imaging for Recurrence Reporting (PI-RR) score,” European Radiology, vol. 33, no. 2, pp. 748–751, 2023, doi: 10.1007/s00330-022-09095-6. [Google Scholar]
  26. J. M. Marrón-Esquivel, L. Duran-Lopez, A. Linares-Barranco, and J. P. Dominguez-Morales, “A comparative study of the inter-observer variability on Gleason grading against Deep Learning-based approaches for prostate cancer,” Computers in Biology and Medicine, vol. 159, no. February, 2023, doi: 10.1016/j.compbiomed.2023.106856. [Google Scholar]
  27. R. Seifert et al., “Second Version of the Prostate Cancer Molecular Imaging Standardized Evaluation Framework Including Response Evaluation for Clinical Trials (PROMISE V2),” European Urology, vol. 83, no. 5, pp. 405–412, 2023, doi: 10.1016/j.eururo.2023.02.002. [CrossRef] [Google Scholar]
  28. N. Paesano, V. Catalá, L. Tcholakian, E. Trilla, and J. Morote, “A Systematic Review of the Current Status of Magnetic Resonance–Ultrasound Images Fusion Software Platforms for Trans perineal Prostate Biopsies,” Cancers, vol. 15, no. 13, 2023, doi: 10.3390/cancers15133329. [CrossRef] [Google Scholar]
  29. P. Gravestock, B. K. Somani, T. Tokas, and B. P. Rai, “A Review of Modern Imaging Landscape for Prostate Cancer: A Comprehensive Clinical Guide,” Journal of Clinical Medicine, vol. 12, no. 3, 2023, doi: 10.3390/jcm12031186. [CrossRef] [Google Scholar]
  30. F. Abd Ali et al., “MRI-Guided Targeted and Systematic Prostate Biopsies as Prognostic Indicators for Prostate Cancer Treatment Decisions,” Cancers, vol. 15, no. 15, pp. 1–14, 2023, doi: 10.3390/cancers15153915. [Google Scholar]
  31. M. Boschheidgen et al., “MRI grading for the prediction of prostate cancer aggressiveness,” European Radiology, vol. 32, no. 4, pp. 2351–2359, 2022, doi: 10.1007/s00330-021-08332-8. [CrossRef] [Google Scholar]
  32. J. Morote et al., “Multiparametric Magnetic Resonance Imaging Grades the Aggressiveness of Prostate Cancer,” Cancers, vol. 14, no. 7, pp. 1–9, 2022, doi: 10.3390/cancers14071828. [Google Scholar]
  33. S. Toledo-Cortés, D. H. Useche, H. Müller, and F. A. González, “Grading diabetic retinopathy and prostate cancer diagnostic images with deep quantum ordinal regression,” Computers in Biology and Medicine, vol. 145, no. 105472, 2022, doi: 10.1016/j.compbiomed.2022.105472. [Google Scholar]
  34. N. Singhal et al., “A deep learning system for prostate cancer diagnosis and grading in whole slide images of core needle biopsies,” Scientific Reports, vol. 12, no. 1, pp. 1–11, 2022, doi: 10.1038/s41598-022-07217-0. [CrossRef] [PubMed] [Google Scholar]
  35. W. Li et al., “Diagnostic Performance of Extraprostatic Extension Grading System for Detection of Extraprostatic Extension in Prostate Cancer: A Diagnostic Systematic Review and Meta-Analysis,” Frontiers in Oncology, vol. 11, no. January, pp. 1–9, 2022, doi: 10.3389/fonc.2021.792120. [Google Scholar]
  36. W. Bulten et al., “Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge,” Nature Medicine, vol. 28, no. 1, pp. 154–163, 2022, doi: 10.1038/s41591-021-01620-2. [CrossRef] [Google Scholar]
  37. G. Ramkumar et al., “Implementation of Machine Learning Mechanism for Recognizing Prostate Cancer through Photoacoustic Signal,” Contrast Media and Molecular Imaging, vol. 2022, 2022, doi: 10.1155/2022/6862083. [CrossRef] [Google Scholar]
  38. R. Sammouda, A. Gumaei, and A. El-Zaart, “Intelligent Computer-Aided Prostate Cancer Diagnosis Systems: Stateof-the-Art and Future Directions,” Mathematical Problems in Engineering, vol. 2021, 2021, doi: 10.1155/2021/9955174. [CrossRef] [Google Scholar]
  39. L. Zhang et al., “Predicting the Grade of Prostate Cancer Based on a Biparametric MRI Radiomics Signature,” Contrast Media and Molecular Imaging, vol. 2021, 2021, doi: 10.1155/2021/7830909. [Google Scholar]
  40. A. H. M. Linkon, M. M. Labib, T. Hasan, M. Hossain, and M. E. Jannat, “Deep learning in prostate cancer diagnosis and Gleason grading in histopathology images: An extensive study,” Informatics in Medicine Unlocked, vol. 24, no. April, p. 100582, 2021, doi: 10.1016/j.imu.2021.100582. [CrossRef] [Google Scholar]
  41. G. Ploussard et al., “Assessment of the minimal targeted biopsy core number per MRI lesion for improving prostate cancer grading prediction,” Journal of Clinical Medicine, vol. 9, no. 1, pp. 1–9, 2020, doi: 10.3390/jcm9010225. [Google Scholar]
  42. C. Siegel, “Re: A Grading System for the Assessment of Risk of Extraprostatic Extension of Prostate Cancer at Multiparametric MRI,” The Journal of urology, vol. 202, no. 3, pp. 440–441, 2019, doi: 10.1097/JU.0000000000000371. [CrossRef] [Google Scholar]
  43. D. M. Berney et al., “Validation of a contemporary prostate cancer grading system using prostate cancer death as outcome,” British Journal of Cancer, vol. 114, no. 10, pp. 1078–1083, 2016, doi: 10.1038/bjc.2016.86. [CrossRef] [Google Scholar]
  44. J. I. Epstein, “A new contemporary prostate cancer grading system,” Annales de Pathologie, vol. 35, no. 6, pp. 474–476, 2015, doi: 10.1016/j.annpat.2015.09.002. [CrossRef] [Google Scholar]
  45. V. Den Heuvel, “Pathologist-Level Grading of Prostate Biopsies with Artificial Intelligence,” Orca, pp. 1–2, 2014. [Google Scholar]
  46. A. C. Reese, J. E. Cowan, J. S. Brajtbord, C. R. Harris, P. R. Carroll, and M. R. Cooperberg, “The quantitative Gleason score improves prostate cancer risk assessment,” Cancer, vol. 118, no. 24, pp. 6046–6054, 2012, doi: 10.1002/cncr.27670. [CrossRef] [Google Scholar]
  47. S. Verma et al., “Assessment of aggressiveness of prostate cancer: Correlation of apparent diffusion coefficient with histologic grade after radical prostatectomy,” American Journal of Roentgenology, vol. 196, no. 2, pp. 374–381, 2011, doi: 10.2214/AJR.10.4441. [CrossRef] [Google Scholar]
  48. N. Borley and M. R. Feneley, “Prostate cancer: Diagnosis and staging,” Asian Journal of Andrology, vol. 11, no. 1, pp. 74–80, 2009, doi: 10.1038/aja.2008.19. [CrossRef] [Google Scholar]
  49. J. I. Epstein et al., “Pathological and molecular aspects of prostate cancer,” Lancet, vol. 361, pp. 955–64, 2003. [Google Scholar]
  50. Notestein, “A REPORT OF THE WORKSHOPS ON THE CURRENT STATUS OF THE HISTOLOGIC GRADING OF PROSTATE CANCER,” The Journal of biophysical and biochemical cytology, vol. 219, no. 3, pp. 214–219, 1973. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.