Open Access
Issue |
ITM Web Conf.
Volume 67, 2024
The 19th IMT-GT International Conference on Mathematics, Statistics and Their Applications (ICMSA 2024)
|
|
---|---|---|
Article Number | 01005 | |
Number of page(s) | 11 | |
Section | Mathematics, Statistics and Their Applications | |
DOI | https://doi.org/10.1051/itmconf/20246701005 | |
Published online | 21 August 2024 |
- J.F. Bard, H.W. Purnomo, Health Care Manag. Sci., 8, 315–324 (2005) [CrossRef] [Google Scholar]
- B.J. Kalisch, M. Aebersold, Interruptions and multitasking in nursing care. Jt. Comm. J. Qual. Patient Saf., 36 (3), 126–132 (2010) [Google Scholar]
- J. Sangai, A. Bellabdaoui, Workload balancing in nurse scheduling problem models and discussion, in 2017 International Colloquium on Logistics and Supply Chain Management (LOGISTIQUA), 82–87. IEEE (2017) [CrossRef] [Google Scholar]
- M. Shahriari, M. Shamali, A. Yazdannik, Iran. J. Nurs. Midwifery Res., 19 (4), 360–365 (2014) [Google Scholar]
- R. Otero, C. Montoya, C.B. Jaimes, C. Garzón, E. Vergel, J. Valdés, Oper. Res. Health Care., 38 (4), 100389 (2023) [CrossRef] [Google Scholar]
- A. Ben Said, E. A. Mohammed, M. Mouhoub, An implicit learning approach for solving the nurse scheduling problem, in Neural Information Processing. ICONIP 2021. LNCS, 13109. Springer, Cham (2021) [Google Scholar]
- A. Youssef, S. Senbel, A Bi-level heuristic solution for the nurse scheduling problem based on shift-swapping, in 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), 72–78. IEEE (2018) [Google Scholar]
- A. R. Clark, H. Walker, J. Appl. Oper. Res., 3 (3), 148–162 (2011) [Google Scholar]
- I. Berrada, J. Ferland, P. Michelon, A multi-objective approach to nurse scheduling with both hard and soft constraints. Socio-Econ. Plan. Sci., 30 (3), 183–193 (1996) [Google Scholar]
- B. Cheang, H. Li, A. Lim, Rodrigues, B., Eur. J. Oper. Res., 151 (3), 447–460 (2003) [CrossRef] [Google Scholar]
- H.T. Lim, R. Ramli, Enhancements of evolutionary algorithm for the complex requirements of a nurse scheduling problem, in AIP Conference Proceedings, vol. 1635(1), 615–619. American Institute of Physics (2014) [CrossRef] [Google Scholar]
- N.V. Dharwadkar, G.G. Shingan, S.U. Mane, S. Joshi, Int. J. Swarm Intell. Res., 13 (1), 1–17 (2022) [CrossRef] [Google Scholar]
- G. Çetin, O. Özkaraca, E. Güvenç, M. Sakal, Genetic algorithm-based optimization for nurse scheduling problem. GJES, 9 (4), 31–38 (2023) [Google Scholar]
- Y.K. Lin, C.H. Yen, Healthcare, 11 (5), 739 (2023) [CrossRef] [Google Scholar]
- T.H. Wu, J.Y. Yeh, Y.M. Lee, J. Comput. Oper. Res., 54, 52–63 (2015) [CrossRef] [Google Scholar]
- S. Karmakar, S. Chakraborty, T. Chatterjee, A. Baidya, Acharyya, S., Meta-heuristics for solving nurse scheduling problem: A comparative study, in 2016 2nd International Conference on Advances in Computing, Communication, & Automation (ICACCA)(Fall), 1–5. IEEE September (2016) [Google Scholar]
- B. Kazimipour, X. Li, A.Q. Qin, A review ofpopulation initialization techniques for evolutionary algorithms, in IEEE Congress on Evolutionary Computation (CEC), 2585–2592. IEEE (2014) [Google Scholar]
- C.C. Lin, J.R. Kang, D.J. Chiang, C.L. Chen, Int. J. Distrib. Sens. Netw., 11 (7), 595419 (2015) [CrossRef] [Google Scholar]
- N. Khalili, P. Shahnazari Shahrezaei, A.G. Abri, J. Appl. Res. Ind. Eng., 7 (4), 396–423 (2020). [Google Scholar]
- Andriansyah, N. Alfadilla, P.D. Sentia, D. Asmadi, Optimization of nurse scheduling problem using genetic algorithm: a case study, in IOP Conference Series: Materials Science and Engineering 536, 012131 (2019) [CrossRef] [Google Scholar]
- E.C. Yagmur, A. Sarucan, J. Intell. Syst., 28 (4), 633–647 (2019) [Google Scholar]
- K. Leksakul, S. Phetsawat, Math. Probl. Eng., 1, 246543 (2014) [Google Scholar]
- L. Augustine, M. Faer, A. Kavountzis, R. Patel, A brief study of the nurse scheduling problem (NSP). University of Pittsburgh Medical Center. (2009) [Google Scholar]
- C.M. Fernandes, N. Fachada, J.L.J. Laredo, J.J. Merelo, A.C. Rosa, Swarm Evol. Comput., 58, 100721 (2020) [CrossRef] [Google Scholar]
- J. Zhong, X. Hu, M. Gu, J. Zhang, Comparison of performance between different selection strategies on simple genetic algorithms, in International Conference on Computational Intelligence for Modelling, Control and Automation, 2005 and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, IEEE. 2, 1115–1121 (2005) [Google Scholar]
- B. Maenhout, M. Vanhoucke, Omega, 41, 903–918 (2013) [CrossRef] [Google Scholar]
- E.K. Burke, A.J. Smith, IEEE Trans. Power Syst., 15 (1), 122–128 (2000) [CrossRef] [Google Scholar]
- J. Heizer, B. Render, Operations management (8th Edition). (New Jersey: Prentice Hall, 2006) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.