Open Access
Issue
ITM Web Conf.
Volume 67, 2024
The 19th IMT-GT International Conference on Mathematics, Statistics and Their Applications (ICMSA 2024)
Article Number 01006
Number of page(s) 10
Section Mathematics, Statistics and Their Applications
DOI https://doi.org/10.1051/itmconf/20246701006
Published online 21 August 2024
  1. Benson, S., Students ask the darnedest things: A result in elementary group theory, Math. Mag. 70, 207–211 (1997). [CrossRef] [MathSciNet] [Google Scholar]
  2. Berman, S. D., Semi-simple cyclic and abelian codes. Kibernetika 3, 21–30 (1967). [Google Scholar]
  3. Boripan, A., Jitman, S. Udomkavanich, P. Characterization and enumeration of complementary dual abelian codes, J. Appl. Math. Comput. 58, 527–544 (2018). [CrossRef] [MathSciNet] [Google Scholar]
  4. Carlet, C., Guilley, S., Complementary dual codes for countermeasures to side-channel attacks, Coding Theory and Applications 3, 97–105 (2015). [CrossRef] [Google Scholar]
  5. Carlet, C., Daif, A., Danger, J.L., Guilley, S., Najm, Z., Ngo, X.T., Portebouef, T., Tavernier, C., Optimized linear complementary codes implementation for hardware trojan prevention, In: Proceedings of European Conference on Circuit Theory and Design, 2015 August 24-26; Trondheim, Norway. Piscataway, USA: IEEE (2015). [Google Scholar]
  6. Chabanne, H., Permutation decoding of abelian codes, IEEE Trans. Inform. Theory 38, 1826–1829 (1992). [CrossRef] [MathSciNet] [Google Scholar]
  7. Ding, C., Kohel, D. R., Ling, S., Split group codes, IEEE Trans. Inform. Theory 46, 485–495 (2000). [CrossRef] [MathSciNet] [Google Scholar]
  8. Etesami, J., Hu, F., Henkel, W., LCD codes and iterative decoding by projections, a first step towards an intuitive description of iterative decoding, In: Proceedings of IEEE Globecom, 2011 December 5-9; Texas, USA. Piscataway, USA: IEEE (2011). [Google Scholar]
  9. Guenda, K., Jitman, S., Gulliver, T. A., Constructions of good entanglement-assisted quantum error correcting codes, Des. Codes Cryptogr. 86, 121–136 (2018) [CrossRef] [MathSciNet] [Google Scholar]
  10. Ishai, Y., Sahai, A., Wagner, D., Private circuits: securing hardware against probing attacks, In: CRYPTO, vol. 2729 of Lecture Notes in Computer Science, pages 463–481. Springer, August 17-21 2003. Santa Barbara, CA, USA. [Google Scholar]
  11. Jitman, S., Correction to: Good integers and some applications in coding theory, Cryptography and Communications 10, 1203–1203 (2018). [CrossRef] [MathSciNet] [Google Scholar]
  12. Jitman, S., Ling, S., Liu, H., Xie, X., Abelian codes in principal ideal group algebras, IEEE Trans. Inform. Theory 59, 3046–3058 (2013). [CrossRef] [MathSciNet] [Google Scholar]
  13. Jitman, S., Ling, S., Solé, P., Hermitian self-dual Abelian codes. IEEE Trans. Inform. Theory 60, 1496–1507 (2014). [CrossRef] [MathSciNet] [Google Scholar]
  14. Massey, J.L., Linear codes with complementary duals, Discrete Mathematics 106/107 337–342 (1992). [CrossRef] [Google Scholar]
  15. Nathanson, M. B., Elementary Methods in Number Theory, (Springer, 2000). [Google Scholar]
  16. Rajan, B. S., Siddiqi, M. U., Transform domain characterization of abelian codes, IEEE Trans. Inform. Theory 38, 1817–1821 (1992). [CrossRef] [MathSciNet] [Google Scholar]
  17. Sendrier, N., Linear codes with complementary duals meet the Gilber-Varshamov bound, Discrete Math 285, 345–347 (2004). [CrossRef] [MathSciNet] [Google Scholar]
  18. Yang, X., Massey, J.L., The condition for a cyclic code to have a complementary dual, Discrete Mathematics 126, 391–393 (1994). [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.