Open Access
Issue
ITM Web Conf.
Volume 67, 2024
The 19th IMT-GT International Conference on Mathematics, Statistics and Their Applications (ICMSA 2024)
Article Number 01029
Number of page(s) 10
Section Mathematics, Statistics and Their Applications
DOI https://doi.org/10.1051/itmconf/20246701029
Published online 21 August 2024
  1. L. A. Zadeh, Fuzzy sets. Information and control, 8 (3), 338–353 (1965) [CrossRef] [Google Scholar]
  2. K. Atanassov, Intuitionistic fuzzy sets. Fuzzy Sets Syst., 20, 87–96 (1986) [CrossRef] [Google Scholar]
  3. N. Z. Zaidi, M. I. E. Zulkifly, Intuitionistic Fuzzy Bézier Curve Approximation Model for Uncertainty Data. Proceedings of Sciences and Mathematics Faculty of Sciences UTM, 3, 42–53 (2021) [Google Scholar]
  4. M. I. E. Zulkifly, A. F. Wahab, Mal. J. Fund Appl. Scis., 11 (1), 21–23 (2015) [Google Scholar]
  5. A. F. Wahab, M. I. E. Zulkifly, M. S. Husain, Bezier curve modeling for intuitionistic fuzzy data problem. AIP Proceedings, 1750(1), 030047-1-030047-7. (2016) [Google Scholar]
  6. M. I. E. Zulkifly, A. F. Wahab, Intuitionistic fuzzy bicubic Bezier surface approximation. AIP Proceedings, 1974(1), 020064 (2018) [Google Scholar]
  7. F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability. Infinite Study, (2005). [Google Scholar]
  8. F. Tas, S. Topal, Bezier Curve Modeling for Neutrosophic Data Problem. Neutrosophic set and system University of New Mexico, (2017). [Google Scholar]
  9. S. Topal, F. Tas, Bézier Surface Modeling for Neutrosophic Data Problems. Neutrosophic set and system University of New Mexico, 19, 19–23 (2018) [Google Scholar]
  10. J. Jacas, A. Monreal, J. Recasens, A model for CAGD using fuzzy logic, Int. J. Approx. Reason., 16(3-4 SPEC. ISS.), 289–308 (1997) [CrossRef] [Google Scholar]
  11. G. Gallo, M. Spagnuolo, S. Spinello, Rainfall Estimation from Sparse Data with Fuzzy B-Splines, Journal of Geographic Information and Decision Analysis, 2 (2), 194–203 (1998) [Google Scholar]
  12. C. Y. Hu, N. M. Patrikalakis, X. Ye, Robust interval solid modeling Part I: Representations, CAD Comput. Aided Des., 28 (10), 807–817 (1996) [CrossRef] [Google Scholar]
  13. H. J. Zimmermann, Fuzzy Set Theory-And Its Applications Springer Science & Business Media. New York, NY, USA. (2001). [CrossRef] [Google Scholar]
  14. P. Blaga, B. Bede, Approximation by fuzzy B-spline series, J. Appl. Math. Comput., 20 (1-2), 157–169 (2006) [CrossRef] [MathSciNet] [Google Scholar]
  15. S. Saga, H. Makino, Fuzzy spline interpolation and its application to on-line freehand curve identification, Proc. 2nd IEEE Internat. Conf, on Fuzzy Systems, 1183–1190 (1993) [CrossRef] [Google Scholar]
  16. F. Smarandache, Neutrosophy. Neutrosophic Probability, Set, and Logic. ProQuest Information & Learning, Ann Arbor, Michigan, USA, 105 (1998) [Google Scholar]
  17. A. F. Wahab, J. M. Ali, A. A. Majid, A. O. M. Tap, Fuzzy Set in Geometric Modeling, Proceedings International Conference on Computer Graphics, Imaging and Visualization, CGIV, Penang, 227–232 (2004) [CrossRef] [Google Scholar]
  18. A. F. Wahab, J. M. Ali, A. A. Majid, Fuzzy geometric modeling, Sixth International Conference on Computer Graphics, Imaging, and Visualization, 276–280 (2009) [Google Scholar]
  19. A. F. Wahab, J. M. Ali, A. A. Majid, A. O. M. Tap, Penyelesaian Masalah Data Ketakpastian Menggunakan Splin-B Kabur, Sains Malays., 39 (4), 661–670 (2010) [Google Scholar]
  20. F. Yamaguchi, Curves and Surfaces in Computer Aided Geometric Design. Springer, Berlin, (1998). [Google Scholar]
  21. D. F. Rogers, An Introduction to NURBS: With Historical Perspective, Academic Press. New York, (2001). [Google Scholar]
  22. G. Farin, Curves and Surfaces for CAGD: A Practical Guide, 5th ed. Academic Press, New York (2002). [Google Scholar]
  23. J. Jacas, A. Monreal, J. Recasens, A model for CAGD using fuzzy logic, Int. J. Approx. Reason., 16(3-4 SPEC. ISS.), 289–308 (1997) [CrossRef] [Google Scholar]
  24. M. S. Bidin, A. F. Wahab, M. I. E. Zulkifly, Z. Rozaimi, Generalized Fuzzy Linguistic Bicubic B-Spline Surface Model for Uncertain Fuzzy Linguistic Data. Symmetry, 14(11) (2022) [Google Scholar]
  25. Z. Rozaimi, A. F. Wahab, I. Ismail, M. I. E. Zulkifly, Complex Uncertainty of Surface Data Modeling via the Type-2 Fuzzy B-Spline Model. MDPI Journal of Mathematics. 9 (1054) (2021) [Google Scholar]
  26. L. Piegl, W. Tiller. The NURBS Book (Springer-Verlag Berlin Heidelberg, Germany, (1995). [CrossRef] [Google Scholar]
  27. S. N. I. Rosli, M. I. E. Zulkifly, A Neutrosophic Approach for B-Spline Curve by Using Interpolation Method. Neutrosophic syst. appl., 9, 29–40, (2023). https://doi.org/10.61356/j.nswa.2023.43 [CrossRef] [Google Scholar]
  28. S. N. I. Rosli, M. I. E. Zulkifly, Neutrosophic Bicubic B-spline Surface Interpolation Model for Uncertainty Data. Neutrosophic syst. appl, 10, 25–34, (2023). https://doi.org/10.61356/j.nswa.2023.69 [CrossRef] [Google Scholar]
  29. S. N. I. Rosli, M. I. E. Zulkifly, 3-Dimensional Quartic Bézier Curve Approximation Model by Using Neutrosophic Approach. Neutrosophic syst. appl, 11, 11–21, (2023). https://doi.org/10.61356/j.nswa.2023.78 [CrossRef] [Google Scholar]
  30. S. N. I. Rosli, M. I. E. Zulkifly, Neutrosophic Bicubic Bezier Surface Approximation Model for Uncertainty Data. MJIAM, 39 (3), 281–291. (2023). https://doi.org/10.11113/matematika.v39.n3.1502 [Google Scholar]
  31. S. N. I. Rosli, M. I. E. Zulkifly, Neutrosophic B-spline Surface Approximation Model for 3- Dimensional Data Collection. Neutrosophic Sets Syst., 63, 95–104, (2024). https://fs.unm.edu/nss8/index.php/111/article/view/3879 [Google Scholar]
  32. S. N. I. Rosli, M. I. E. Zulkifly, Interval Neutrosophic Cubic Bézier Curve Approximation Model for Complex Data. Mal. J. Fund. Appl. Sci., 20 (2), 336–346. (2024). https://doi.org/10.11113/mjfas.v20n2.3240 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.