Open Access
Issue
ITM Web Conf.
Volume 67, 2024
The 19th IMT-GT International Conference on Mathematics, Statistics and Their Applications (ICMSA 2024)
Article Number 01035
Number of page(s) 9
Section Mathematics, Statistics and Their Applications
DOI https://doi.org/10.1051/itmconf/20246701035
Published online 21 August 2024
  1. J. P. Allouche, J. Johnson, Narayanas cows and delayed morphisms, In Articles of 3rd Computer Music Conference JIM96, France, (1996). [Google Scholar]
  2. N. Le Bihan, S. J. Sangwine, Quaternion principal component analysis of color images. In Proceedings 2003 International Conference on Image Processing (Cat. No. 03CH37429) (2003) Sep 14 (Vol. 1, pp. I–809). IEEE. [CrossRef] [Google Scholar]
  3. W. Y. Chen, A general bijective algorithm for trees. Proceedings of the National Academy of Sciences 87, no. 24 (1990), 9635–9639. [CrossRef] [MathSciNet] [Google Scholar]
  4. B. Chen, H. Shu and G. Coatrieux, G. Chen, X. Sun, Coatrieux J.L. Color image analysis by quaternion-type moments, Journal of mathematical imaging and vision, Jan; 51, (2015) 124–144. [CrossRef] [MathSciNet] [Google Scholar]
  5. C. B. Çimen and A. Ipek, On pell quaternions and Pell-Lucas quaternions. Advances in Applied Clifford Algebras, 26, (2016), 39-51. [Google Scholar]
  6. S. Demir, M. Tanl and N. Candemir, Hyperbolic quaternion formulation of electromagnetism. Advances in Applied Clifford Algebras, 20, (2010), 547-563. [Google Scholar]
  7. A. Godase, Hyperbolic k-Fibonacci and k-Lucas quaternions, Math. Student 90(1-2) (2021), 103–116. [MathSciNet] [Google Scholar]
  8. W. R. Hamilton, Elements of quaternions, London, Longmans, Green, & Company, 1866. [Google Scholar]
  9. A. F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions, Amer. Math. Monthly 70(3) (1963), 289–291. [CrossRef] [MathSciNet] [Google Scholar]
  10. I. A. Kösal, A note on hyperbolic quaternions, Universal Journal of Mathematics and Applications 1(3) (2018), 155–159. https://doi.org/10.32323/ujma.380645 [CrossRef] [Google Scholar]
  11. A. Macfarlane, Hyperbolic quaternions, Proc. Roy. Soc. Edinburgh 23 (1902), 169-180. https://doi.org/10.1017/S0370164600010385 [Google Scholar]
  12. E. Özkan, B. Kuloglu and J. F. Peters, k-Narayana sequence self-simirality, Flip graph views of k-Narayana self-similarity, Chaos, Solitons & Fractals, Volume 153, Part 2 (2021). https://doi.org/10.1016/j.chaos.2021.111473 [Google Scholar]
  13. E. Özkan, M. Uysal and A. Godase, Hyperbolic k-Jacobsthal and k-Jacobsthal-Lucas quaternions, Indian J. Pure Appl. Math. 53 (2022), 956967. https://doi.org/10.1007/s13226-021-00202-9 [Google Scholar]
  14. J. L. Ramírez and V. F. Sirvent, A note on the k-Narayana sequences, Ann. Math. Inf., 45 (2015), 91-105. [Google Scholar]
  15. R. A. Sulanke, Constraint-sensitive Catalan path statistics having the Narayana distribution. Discrete mathematics, 204(1-3), (1999), 397–414. [CrossRef] [MathSciNet] [Google Scholar]
  16. K. Takahashi, Comparison of high-dimensional neural networks using hypercomplex numbers in a robot manipulator control. Artificial Life and Robotics. 2021 Aug;26(3):367–377. [CrossRef] [Google Scholar]
  17. T. Yagmur, A note on hyperbolic (p, q)-Fibonacci quaternions, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., Volume 69, Number 1, Pages 880–890 (2020), DOI: 10.31801. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.