Open Access
Issue |
ITM Web Conf.
Volume 68, 2024
2024 First International Conference on Artificial Intelligence: An Emerging Technology in Management (ICAETM 2024)
|
|
---|---|---|
Article Number | 01021 | |
Number of page(s) | 9 | |
Section | Engineering Technology & Management | |
DOI | https://doi.org/10.1051/itmconf/20246801021 | |
Published online | 12 December 2024 |
- Adeyeri, Toluwani. (2024). Economic Impacts of AI-Driven Automation in Financial Services. International Journal of Scientific Research and Management (IJSRM). 12. 6779–6791. 10.18535/ijsrm/v12i07.em07. [CrossRef] [Google Scholar]
- Balyuk, T., Fout, H. B., & Prabhala, N. R. (2021). Outsourcing mortgage underwriting with AI: Implications for fintech and banks. The Review of Financial Studies, 34(10), 4949–4983. [Google Scholar]
- Bansal, S. (2021). The Impact of Artificial Intelligence and Machine Learning on Financial Markets. Innovative Research Thoughts, 7(4), 217–222. Retrieved from https://irt.shodhsagar.com/index.php/j/article/view/1087 [Google Scholar]
- Basly, S. (2024). Artificial Intelligence and the Future of Decentralized Finance. In Decentralized Finance: The Impact of Blockchain-Based Financial Innovations on Entrepreneurship (pp. 175–183). Cham: Springer International Publishing. [Google Scholar]
- Belhaj, M., & Hachaïchi, Y. (2023). Artificial Intelligence, Machine Learning and Big Data in Finance Opportunities, Challenges, and Implications for Policy Makers. 10.13140/RG.2.2.27950.18248. [Google Scholar]
- Binns, R. (2018). Fairness in machine learning: Lessons from political philosophy. Proceedings of the 2018 Conference on Fairness, Accountability, and Transparency, 149–159. [Google Scholar]
- Birkstedt, T., Minkkinen, M., Tandon, A., & Mäntymäki, M. (2023). AI governance: Themes, knowledge gaps and future agendas. Internet Research, 33(7), 133–167. [CrossRef] [Google Scholar]
- Boreiko, D., & Sapletta, L. (2021). AI in finance: Machine learning applications in the financial industry. Financial Innovation, 7, Article 41. [Google Scholar]
- Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard business review, 96(1), 108–116. [Google Scholar]
- Sridevi, E., Deepa, P., Vijai, C., Isravel, Y., Kumar, R., M. Rajalakshmi. (2024). Artificial Intelligence and Machine Learning in Financial Service. Socio Economic Challenges, 8(1), 218–223. https://socioeconomicchallenges.com/index.php/SEC/article/view/127 [Google Scholar]
- Goodman, B., & Flaxman, S. (2017). European Union regulations on algorithmic decision-making and a “right to explanation”. AI magazine, 38(3), 50–57. [CrossRef] [Google Scholar]
- Girimurugan, B., Kumaresan, V., Nair, S. G., Kuchi, M., & Kholifah, N. (2024). AI and Machine Learning in E-Commerce Security: Emerging Trends and Practices. Strategies for E-Commerce Data Security: Cloud, Blockchain, AI, and Machine Learning, 29–53. [CrossRef] [Google Scholar]
- Han, W., Xu, J., Cheng, Q., Zhong, Y., & Qin, L. (2024). Robo-Advisors: Revolutionizing Wealth Management Through the Integration of Big Data and Artificial Intelligence in Algorithmic Trading Strategies. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 3(3), 33–45. [CrossRef] [Google Scholar]
- Hassan, M., Aziz, L. A. R., & Andriansyah, Y. (2023). The role artificial intelligence in modern banking: an exploration of AI-driven approaches for enhanced fraud prevention, risk management, and regulatory compliance. Reviews of Contemporary Business Analytics, 6(1), 110–132. [Google Scholar]
- Javaid, H. A. (2024). The Future of Financial Services: Integrating AI for Smarter, More Efficient Operations. MZ Journal of Artificial Intelligence, 1(2). [Google Scholar]
- Kamuangu, P. (2024). Advancements of AI and Machine Learning in FinTech Industry (20162020). Journal of Economics, Finance and Accounting Studies, 6(1), 23–31. [CrossRef] [Google Scholar]
- Komolafe, A. M., Aderotoye, I. A., Abiona, O. O., Adewusi, A. O., Obijuru, A., Modupe, O. T., & Oyeniran, O. C. (2024). Harnessing business analytics for gaining competitive advantage in emerging markets: a systematic review of approaches and outcomes. International Journal of Management & Entrepreneurship Research, 6(3), 838–862 [CrossRef] [Google Scholar]
- Kordzadeh, N., & Ghasemaghaei, M. (2022). Algorithmic bias: review, synthesis, and future research directions. European Journal of Information Systems, 31(3), 388–409. [CrossRef] [Google Scholar]
- Kothandapani, H. P. (2023). Emerging trends and technological advancements in data lakes for the financial sector: An in-depth analysis of data processing, analytics, and infrastructure innovations. Quarterly Journal of Emerging Technologies and Innovations, 8(2), 62–75. [Google Scholar]
- Kumari, B., Kaur, J. and Swami, S. (2024), “Adoption of artificial intelligence in financial services: a policy framework”, Journal of Science and Technology Policy Management, Vol. 15 No. 2, pp. 396–417. https://doi.org/10.1108/JSTPM-03-2022-0062 [CrossRef] [Google Scholar]
- Kunwar, M. (2019). Artificial intelligence in finance: Understanding how automation and machine learning is transforming the financial industry. www.theseus.fi. https://urn.fi/URN:NBN:fi:amk-2019082818025 [Google Scholar]
- Massei, G. (2023). Algorithmic Trading: An Overview and Evaluation of Its Impact on Financial Markets. [Google Scholar]
- Meskys, E., Kalpokiene, J., Jurcys, P., & Liaudanskas, A. (2020). Regulating deep fakes: legal and ethical considerations. Journal of Intellectual Property Law & Practice, 15(1), 24–31. [CrossRef] [Google Scholar]
- Mogaji, E., & Nguyen, N. P. (2022). Managers’ understanding of artificial intelligence in relation to marketing financial services: insights from a crosscountry study. International Journal of Bank Marketing, 40(6), 1272–1298. [CrossRef] [Google Scholar]
- Morandini, S., Fraboni, F., De Angelis, M., Puzzo, G., Giusino, D., & Pietrantoni, L. (2023). The impact of artificial intelligence on workers’ skills: Upskilling and reskilling in organisations. Informing Science, 26, 39–68. [Google Scholar]
- Navarro, C. L. A., Damen, J. A., Takada, T., Nijman, S. W., Dhiman, P., Ma, J., ... & Hooft, L. (2021). Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review. bmj, 375. [Google Scholar]
- Olorunfemi, O. L., Amoo, O. O., Atadoga, A., Fayayola, O. A., Abrahams, T. O., & Shoetan, P. O. (2024). Towards a conceptual framework for ethical AI development in IT systems. Computer Science & IT Research Journal, 5(3), 616–627. [CrossRef] [Google Scholar]
- Padmanaban, H. (2024). Navigating the Complexity of Regulations: Harnessing AI/ML for Precise Reporting. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 3(1), 49–61. [Google Scholar]
- Padmanaban, H. (2024). Revolutionizing regulatory reporting through AI/ML: Approaches for enhanced compliance and efficiency. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 2(1), 71–90. [Google Scholar]
- Paramesha, M., Rane, N. L., & Rane, J. (2024). Artificial Intelligence, Machine Learning, Deep Learning, and Blockchain in Financial and Banking Services: A Comprehensive Review. Partners Universal Multidisciplinary Research Journal, 1(2), 51–67. [Google Scholar]
- Perumalsamy, J., Althati, C., & Muthusubramanian, M. (2023). Leveraging AI for Mortality Risk Prediction in Life Insurance: Techniques, Models, and Real-World Applications. Journal of Artificial Intelligence Research, 3(1), 38–70. [Google Scholar]
- Pinto, A. S., Abreu, A., Costa, E., & Paiva, J. (2023). How machine learning (ml) is transforming higher education: A systematic literature review. Journal of Information Systems Engineering and Management, 8(2). [Google Scholar]
- Ryll, L., & Seidens, C. (2022). The rise of RegTech: Regulatory technology for financial services compliance. Journal of Financial Regulation and Compliance, 30(2), 119–136. [Google Scholar]
- Saetra, H. S. (2023). The AI ESG protocol: Evaluating and disclosing the environment, social, and governance implications of artificial intelligence capabilities, assets, and activities. Sustainable development, 31(2), 1027–1037. [CrossRef] [Google Scholar]
- Sardauna, A. S., & Ali, A. (2024). Integration of AI in the Banking Sector. [Google Scholar]
- Sharma, M., Luthra, S., Joshi, S., & Kumar, A. (2022). Implementing challenges of artificial intelligence: Evidence from public manufacturing sector of an emerging economy. Government Information Quarterly, 39(4), 101624 [CrossRef] [Google Scholar]
- Singh, A., Satapathy, S. C., Roy, A., & Gutub, A. (2022). Ai-based mobile edge computing for IOT: Applications, challenges, and future scope. https://irt.shodhsagar.com/index.php/j/article/view/1087 [Google Scholar]
- Singla, A., & Malhotra, T. (2024). Challenges And Opportunities in Scaling AI/ML Pipelines. Journal of Science & Technology, 5(1), 1–21. [CrossRef] [Google Scholar]
- Staub, L., van Giffen, B., Hehn, J., & Sturm, S. (2023, July). Design Thinking for Artificial Intelligence: How Design Thinking Can Help Organizations to Address Common AI Project Challenges. In International Conference on HumanComputer Interaction (pp. 251–267). Cham: Springer Nature Switzerland. [Google Scholar]
- Tillu, R., Muthusubramanian, M., & Periyasamy, V. (2023). From Data to Compliance: The Role of AI/ML in Optimizing Regulatory Reporting Processes. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 2(3), 381–391. [CrossRef] [Google Scholar]
- Vela, D., Sharp, A., Zhang, R., Nguyen, T., Hoang, A., & Pianykh, O. S. (2022). Temporal quality degradation in AI models. Scientific Reports, https://irt.shodhsagar.com/index.php/j/article/view/1087 12(1), 11654. [CrossRef] [Google Scholar]
- Zavolokina, L., Dolata, M., & Schwabe, G. (2019). The FinTech phenomenon: Antecedents of financial innovation perceived by the popular press. Journal of Innovation Management, 7(1), 4–20. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.