Open Access
Issue
ITM Web Conf.
Volume 68, 2024
2024 First International Conference on Artificial Intelligence: An Emerging Technology in Management (ICAETM 2024)
Article Number 01022
Number of page(s) 5
Section Engineering Technology & Management
DOI https://doi.org/10.1051/itmconf/20246801022
Published online 12 December 2024
  1. Albayati, H., Kim, S.-K., & Rho, J. J. (2020). The influence of technical, organizational, and environmental factors on blockchain technology adoption: The case of financial and manufacturing firms. Sustainability, 12(10), 4035. [CrossRef] [Google Scholar]
  2. Lotfi, A., Pourpanah, F., Arabameri, E., & Mehrabi, H. (2021). A review of machine learning applications in cryptocurrency market forecasting. Journal of Financial Markets, Institutions & Instruments, 30(3), 113–142. [CrossRef] [Google Scholar]
  3. Bouoiyour, J., & Selmi, R. (2021). Cryptocurrencies: A survey on efficiency and their empirical relations with financial assets. Journal of Risk and Financial Management, 14(3), 141. [Google Scholar]
  4. Li, X., Zhang, C., Sun, L., & Zhang, M. (2020). A hybrid LSTM-CNN model for predicting short-term air quality in Beijing, China. Atmospheric Environment, 223, 117297. [CrossRef] [Google Scholar]
  5. Tian, H., Li, G., Zhang, L., & Zhu, C. (2018). A hybrid model of LSTM and CNN for short-term load forecasting. Energy, 144, 549–556. [CrossRef] [Google Scholar]
  6. Kavitha, Dr.M.., Gnaneswar, G.., Dinesh, R.., Sai, Y.., & Suraj, R.. (2021). Heart Disease Prediction using Hybrid machine Learning Model. 2021 6th International Conference on Inventive Computation Technologies (ICICT) , 1329–1333. [Google Scholar]
  7. Barzegar, R., Mosaedi, A., & Toroghi, F. (2020). A hybrid CNN-LSTM deep learning model for short-term water quality prediction. Water Resources Management, 34, 4597–4612. [Google Scholar]
  8. Zheng, Z., Li, X., & Song, H. (2021). Short-term traffic flow prediction with an attention-based LSTM-CNN model. IEEE Transactions on Intelligent Transportation Systems, 22(7), 4329–4340. [Google Scholar]
  9. Sherstinsky, A. (2018). Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica A: Statistical Mechanics and Its Applications, 507, 1–36. [CrossRef] [MathSciNet] [Google Scholar]
  10. Zhang, L., Fang, L., Wu, H., & Zhou, P. (2019). State refinement for pedestrian trajectory prediction using LSTM. Sensors, 19(21), 4689. [CrossRef] [Google Scholar]
  11. Xiang, C., Chen, Y., Zhang, J., & Liu, D. (2020). Rainfall-runoff prediction with a sequence-to-sequence LSTM model. Journal of Hydrology, 586, 124866. [CrossRef] [Google Scholar]
  12. Zhou, S., Yang, J., & Fan, C. (2019). Attention-based LSTM neural network model for short-term photovoltaic power forecasting. Energy, 175, 454–463. [Google Scholar]
  13. Qiu, Y., Zheng, H., & Ren, L. (2020). Financial time series forecasting using LSTM networks with attention mechanism. IEEE Access, 8, 185991–186001. [Google Scholar]
  14. Kurani, N., Ramesh, B., & Sundar, M. (2021). Stock price prediction using support vector machine and artificial neural networks: A comparative study. Journal of Computational Science, 50, 101322. [Google Scholar]
  15. Wan, J., Tang, S., & Li, D. (2021). Semi-supervised support vector machine for digital twin-based brain image fusion. Future Generation Computer Systems, 117, 397405. [Google Scholar]
  16. Selvamuthu, D., Kumar, V., & Mishra, A. (2019). Indian stock market prediction using artificial neural networks on tick data. Financial Innovation, 5(1), 1–12. [CrossRef] [Google Scholar]
  17. Shen, Y., & Shafiq, M. O. (2020). Predicting short-term stock market trends using machine learning algorithms. Journal of Financial Data Science, 2(3), 33–45. [CrossRef] [Google Scholar]
  18. Yang, Zhang., Ce, Li., & Lian, Li. (2017). Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods. Applied Energy, 190, 291–305. [CrossRef] [Google Scholar]
  19. Filho, Hugo Crisóstomo de Castro., Júnior, O. C.., Carvalho, O.., Bem, Pablo Pozzobon de., Moura, Rebeca dos Santos de., Albuquerque, Anesmar Olino de., Silva, Cristiano Rosa e., Ferreira, Pedro Henrique Guimarães., Guimarães, R.., & Gomes, R.. (2020). Rice Crop Detection Using LSTM, Bi-LSTM, and Machine Learning Models from Sentinel-1 Time Series. Remote. Sens., 12, 2655. [CrossRef] [Google Scholar]
  20. Wan, Zhibo., Dong, Youqiang., Yu, Zengchen., Lv, Haibin., & Lv, Zhihan-han. (2021). Semi-Supervised Support Vector Machine for Digital Twins Based Brain Image Fusion. Frontiers in Neuroscience, 15. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.