Open Access
Issue
ITM Web Conf.
Volume 69, 2024
International Conference on Mobility, Artificial Intelligence and Health (MAIH2024)
Article Number 02001
Number of page(s) 6
Section Health
DOI https://doi.org/10.1051/itmconf/20246902001
Published online 13 December 2024
  1. Elden, R. H., Ghonim, V. F., Hadhoud, M. M., & Al-Atabany, W. (2023). Transcriptomic marker screening for evaluating the mortality rate of pediatric sepsis based on Henry gas solubility optimization. Alexandria Engineering Journal, 68, 693–707. [CrossRef] [Google Scholar]
  2. Elloumi, M., Ahmad, M. A., Samak, A. H., Al-Sharafi, A. M., Kihara, D., & Taloba, A. I. (2022). Error correction algorithms in non-null aspheric testing next generation sequencing data. Alexandria Engineering Journal, 61(12), 9819–9829. [CrossRef] [Google Scholar]
  3. Akgül, A., Khoshnaw, S. H., & Rasool, H. M. (2020). Minimizing cell signalling pathway elements using lumping parameters. Alexandria Engineering Journal, 59(4), 2161–2169. [CrossRef] [Google Scholar]
  4. Esmaeili, Y., Bidram, E., Bigham, A., Atari, M., Azadani, R. N., Tavakoli, M., … & Zarrabi, A. (2023). Exploring the evolution of tissue engineering strategies over the past decade: From cell-based strategies to gene-activated matrix. Alexandria Engineering Journal, 81, 137169. [CrossRef] [Google Scholar]
  5. Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., … & Lander, E. S. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. science, 286(5439), 531537. [CrossRef] [Google Scholar]
  6. Gordon G.J., Jensen R.V., Hsiao L.L., Gullans S.R., Blumenstock J.E., Ramaswamy S., Richards W.G., Sugarbaker D.J., Bueno R: Translation of microarray data into clinically relevant can-cer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. CancerRes. 2002, 62: 4963–4967 [Google Scholar]
  7. M. A. Shipp, K. N. Ross, P. Tamayo et al., “Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning,” Nature Medicine, vol. 8, no. 1, pp. 68–74, 2002 [CrossRef] [Google Scholar]
  8. E. F. Petricoin, A. M. Ardekani, B. A. Hitt, P. J. Levine, V. A. Fusaro, S. M. Steinberg, G. B. Mills, C. Simone, D. A. Fishman, E. C. Kohn, and L. A. Liotta. Use of proteomic patterns in serum to identify ovarian cancer. Lancet, 359:572–577, 2002 [CrossRef] [Google Scholar]
  9. Alshmrani, G. M. M., Ni, Q., Jiang, R., Pervaiz, H., & Elshennawy, N. M. (2023). A deep learning architecture for multi-class lung diseases classification using chest X-ray (CXR) images. Alexandria Engineering Journal, 64, 923–935. [CrossRef] [Google Scholar]
  10. Liao, X., Li, K., Gan, Z., Pu, Y., Qian, G., & Zheng, X. (2024). Prognostic prediction of ovarian cancer based on hierarchical sampling & finegrained recognition convolution neural network. Alexandria Engineering Journal, 102, 264–278. [CrossRef] [Google Scholar]
  11. Alzahrani, A. S., Shah, R. A., Qian, Y., & Ali, M. (2020). A novel method for feature learning and network intrusion classification. Alexandria Engineering Journal, 59(3), 1159–1169. [CrossRef] [Google Scholar]
  12. Althobaiti, T., Althobaiti, S., & Selim, M. M. (2024). An optimized diabetes mellitus detection model for improved prediction of accuracy and clinical decision-making. Alexandria Engineering Journal, 94, 311–324. [CrossRef] [Google Scholar]
  13. Faris, M., Mahmud, M. N., Salleh, M. F. M., & Alsharaa, B. (2023). A differential evolution-based algorithm with maturity extension for feature selection in intrusion detection system. Alexandria Engineering Journal, 81, 178–192. [CrossRef] [Google Scholar]
  14. Mahalakshmi, D. M., & Sumathi, S. (2019). Brain tumour segmentation strategies utilizing mean shift clustering and content based active contour segmentation. ICTACT J. Image Video Process, 9(4), 2002–2008. [CrossRef] [MathSciNet] [Google Scholar]
  15. Chandran, V., & Mohapatra, P. (2023). Enhanced opposition-based grey wolf optimizer for global optimization and engineering design problems. Alexandria Engineering Journal, 76, 429–467. [CrossRef] [Google Scholar]
  16. Gavisiddappa, G., Mahadevappa, S., & Patil, C. (2020). Multimodal biometric authentication system using modified ReliefF feature selection and multi support vector machine. International Journal of Intelligent Engineering and Systems, 13(1), 1–12. [CrossRef] [Google Scholar]
  17. Rahadian, H., Bandong, S., Widyotriatmo, A., & Joelianto, E. (2023). Image encoding selection based on Pearson correlation coefficient for time series anomaly detection. Alexandria Engineering Journal, 82, 304–322. [CrossRef] [Google Scholar]
  18. Shaheen, M., Naheed, N., & Ahsan, A. (2023). Relevance-diversity algorithm for feature selection and modified Bayes for prediction. Alexandria Engineering Journal, 66, 329–342. [CrossRef] [Google Scholar]
  19. Aljawarneh, M., Hamdaoui, R., Zouinkhi, A., Alangari, S., & Abdelkrim, M. N. (2024). Energy optimization for wireless sensor network using minimum redundancy maximum relevance feature selection and classification techniques. PeerJ Computer Science, 10, e1997. [CrossRef] [Google Scholar]
  20. Abo-Elnaga, Y., & Nasr, S. (2022). K-means cluster interactive algorithm-based evolutionary approach for solving bilevel multi-objective programming problems. Alexandria Engineering Journal, 61(1), 811–827. [CrossRef] [Google Scholar]
  21. Saroġlu, H. E., Shayea, I., Saoud, B., Azmi, M. H., El-Saleh, A. A., Saad, S. A., & Alnakhli, M. (2024). Machine learning, IoT and 5G technologies for breast cancer studies: A review. Alexandria Engineering Journal, 89, 210223. [Google Scholar]
  22. Roshani, M., Phan, G. T., Ali, P. J. M., Roshani, G. H., Hanus, R., Duong, T., … & Kalmoun, E. M. (2021). Evaluation of flow pattern recognition and void fraction measurement in two phase flow independent of oil pipeline’s scale layer thickness. Alexandria Engineering Journal, 60(1), 1955–1966. [CrossRef] [Google Scholar]
  23. Wijaya, I. G. P. S., Widiartha, I. B. K., Bimantoro, F., & Septiadi, A. (2019). Buildings cracks classification using zoning and invariant moment features and quadratic discriminant analysis classifier. Lontar Komputer: Jurnal Ilmiah Teknologi Informasi, 158–168. [CrossRef] [Google Scholar]
  24. Omer, N., Samak, A. H., Taloba, A. I., & Abd El-Aziz, R. M. (2023). A novel optimized probabilistic neural network approach for intrusion detection and categorization. Alexandria Engineering Journal, 72, 351–361. [CrossRef] [Google Scholar]
  25. Luo, X. (2021). Efficient English text classification using selected machine learning techniques. Alexandria Engineering Journal, 60(3), 3401–3409. [CrossRef] [Google Scholar]
  26. Afify, H. A. (2011). Evaluation of change detection techniques for monitoring land-cover changes: A case study in new Burg El-Arab area. Alexandria engineering journal, 50(2), 187195. [CrossRef] [Google Scholar]
  27. Mallick, P. K., Mohapatra, S. K., Chae, G. S., & Mohanty, M. N. (2023). Convergent learningbased model for leukemia classification from gene expression. Personal and Ubiquitous Computing, 27(3), 1103–1110. [CrossRef] [Google Scholar]
  28. Nirmalakumari, K., Rajaguru, H., & Rajkumar, P. (2023, April). Leukemia cancer classification using extrusive genes from microarray data. In AIP Conference Proceedings (Vol. 2725, No. 1). AIP Publishing. [Google Scholar]
  29. Jacophine Susmi, S., Khanna Nehemiah, H., Kannan, A., & Christopher, J. (2016). Relevant Gene Selection and Classification of Leukemia Gene Expression Data. In Emerging Research in Computing, Information, Communication and Applications: ERCICA 2015, Volume 3 (pp. 503–510). Springer Singapore. [Google Scholar]
  30. Fathi, H., AlSalman, H., Gumaei, A., Manhrawy, I. I., Hussien, A. G., & El-Kafrawy, P. (2021). Research Article An Efficient Cancer Classification Model Using Microarray and HighDimensional Data. [Google Scholar]
  31. Olaniran, O. R., & Abdullah, M. A. A. (2020, March). Subset selection in high-dimensional genomic data using hybrid variational Bayes and bootstrap priors. In Journal of Physics: Conference Series (Vol. 1489, No. 1, p. 012030). IOP Publishing. [CrossRef] [Google Scholar]
  32. Astuti, W. (2021, August). Comparative analysis of support vector machine (SVM) and random forest (RF) classification for cancer detection using microarray. In 2021 9th International Conference on Information and Communication Technology (ICoICT) (pp. 650–656). IEEE. [Google Scholar]
  33. Rezaee, K., Jeon, G., Khosravi, M. R., Attar, H. H., & Sabzevari, A. (2022). Deep learning-based microarray cancer classification and ensemble gene selection approach. IET Systems Biology, 16(3-4), 120–131. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.