Open Access
Issue |
ITM Web Conf.
Volume 69, 2024
International Conference on Mobility, Artificial Intelligence and Health (MAIH2024)
|
|
---|---|---|
Article Number | 02002 | |
Number of page(s) | 6 | |
Section | Health | |
DOI | https://doi.org/10.1051/itmconf/20246902002 | |
Published online | 13 December 2024 |
- Almarzouki, H. Z. (2022). Deep-learning-based cancer profiles classification using gene expression data profile. Journal of Healthcare Engineering, 2022(1), 4715998. [CrossRef] [Google Scholar]
- Gupta, S., Gupta, M. K., Shabaz, M., & Sharma, A. (2022). Deep learning techniques for cancer classification using microarray gene expression data. Frontiers in Physiology, 13, 952709. [CrossRef] [Google Scholar]
- Debnath, S., Aisha, S., Malakar, A., Perveen, K., Alfagham, A. T., Khanam, M. N., … & Mohammed, Y. A. (2023). Understanding the cross-talk of major abiotic-stress-responsive genes in rice: A computational biology approach. Journal of King Saud University-Science, 35(7), 102786. [CrossRef] [Google Scholar]
- Enoma, D. O., Bishung, J., Abiodun, T., Ogunlana, O., & Osamor, V. C. (2022). Machine learning approaches to genome-wide association studies. Journal of King Saud University-Science, 34(4), 101847. [CrossRef] [Google Scholar]
- Elwahsh, H., Tawfeek, M. A., Abd El-Aziz, A. A., Mahmood, M. A., Alsabaan, M., & El-Shafeiy, E. (2023). A new approach for cancer prediction based on deep neural learning. Journal of King Saud University-Computer and Information Sciences, 35(6), 101565. [CrossRef] [Google Scholar]
- Marie-Sainte, S. L., & Alalyani, N. (2020). Firefly algorithm based feature selection for Arabic text classification. Journal of King Saud UniversityComputer and Information Sciences, 32(3), 320328. [Google Scholar]
- Hegazy, A. E., Makhlouf, M. A., & El-Tawel, G. S. (2020). Improved salp swarm algorithm for feature selection. Journal of King Saud UniversityComputer and Information Sciences, 32(3), 335344. [Google Scholar]
- Ali, W., & Saeed, F. (2023). Hybrid filter and genetic algorithm-based feature selection for improving cancer classification in highdimensional microarray data. Processes, 11(2), 562. [CrossRef] [Google Scholar]
- Dash, R. (2021). An adaptive harmony search approach for gene selection and classification of high dimensional medical data. Journal of King Saud University-Computer and Information Sciences, 33(2), 195–207. [CrossRef] [Google Scholar]
- Hegazy, A. E., Makhlouf, M. A., & El-Tawel, G. S. (2020). Improved salp swarm algorithm for feature selection. Journal of King Saud UniversityComputer and Information Sciences, 32(3), 335344. [Google Scholar]
- Dash, R. (2021). An adaptive harmony search approach for gene selection and classification of high dimensional medical data. Journal of King Saud University-Computer and Information Sciences, 33(2), 195–207. [CrossRef] [Google Scholar]
- Benkessirat, A., & Benblidia, N. (2022). A novel feature selection approach based on constrained eigenvalues optimization. Journal of King Saud University-Computer and Information Sciences, 34(8), 4836–4846. [CrossRef] [Google Scholar]
- Kp, M. N., & Thiyagarajan, P. (2022). Feature selection using efficient fusion of Fisher Score and greedy searching for Alzheimer’s classification. Journal of King Saud University-Computer and Information Sciences, 34(8), 4993–5006. [CrossRef] [Google Scholar]
- Hegazy, A. E., Makhlouf, M. A., & El-Tawel, G. S. (2020). Improved salp swarm algorithm for feature selection. Journal of King Saud UniversityComputer and Information Sciences, 32(3), 335344. [Google Scholar]
- Uthman, K. A., Ba-Alwi, F. M., & Othman, S. M. (2020). A survey on feature selection in microarray data: Methods algorithms and challenges. International Journal of Computer Sciences and Engineering, 8(10), 106–116. [Google Scholar]
- Jiang, D., Tang, C., & Zhang, A. (2004). Cluster analysis for gene expression data: a survey. IEEE Transactions on knowledge and data engineering, 16(11), 1370–1386. [CrossRef] [Google Scholar]
- Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., Coller H., Loh M.L., Downing J.R., Caligiuri M.A., Bloomfield C.D., Lander ES: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. Oct. 1999, 286: pages 531–537. [CrossRef] [Google Scholar]
- Hou, J., Ye, X., Feng, W., Zhang, Q., Han, Y., Liu, Y., … & Wei, Y. (2022). Distance correlation application to gene co-expression network analysis. BMC bioinformatics, 23(1), 81. [CrossRef] [Google Scholar]
- Kohavi R. and John G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1-2):273–324, 1997. [Google Scholar]
- S. Kwon, H. Lee, S. Lee (2016), “Image enhancement with Gaussian filtering in timedomain microwave imaging system for breast cancer detection”, Electronics Letters, vol. 52, no. 5, pp. 342–344, 3 2016 [CrossRef] [Google Scholar]
- Wazery, Y. M., Saber, E., Houssein, E. H., Ali, A. A., & Amer, E. (2021). An efficient slime mould algorithm combined with k-nearest neighbor for medical classification tasks. IEEE Access, 9, 113666–113682. [CrossRef] [Google Scholar]
- Alwohaibi, M., Alzaqebah, M., Alotaibi, N. M., Alzahrani, A. M., & Zouch, M. (2022). A hybrid multi-stage learning technique based on brain storming optimization algorithm for breast cancer recurrence prediction. Journal of King Saud University-Computer and Information Sciences, 34(8), 5192–5203. [CrossRef] [Google Scholar]
- Elwahsh, H., Tawfeek, M. A., Abd El-Aziz, A. A., Mahmood, M. A., Alsabaan, M., & El-Shafeiy, E. (2023). A new approach for cancer prediction based on deep neural learning. Journal of King Saud University-Computer and Information Sciences, 35(6), 101565. [CrossRef] [Google Scholar]
- Almalki, Y. E., Khalid, M., Alduraibi, S. K., Yousaf, Q., Zaffar, M., Almutiri, S. M., … & Alshamrani, H. A. (2022). LBP-Bilateral Based Feature Fusion for Breast Cancer Diagnosis. Computers Materials & Continua, 73, 4103–4121. [CrossRef] [Google Scholar]
- Sara, H. B., & Jihad, H. B. (2024, April). Artificial Intelligence Application for the Classification of Central Nervous System Tumors Based on Blood Biomarkers. In 2024 International Conference on Global Aeronautical Engineering and Satellite Technology (GAST) (pp. 1–5). IEEE. [Google Scholar]
- Abubakar, A., Jibrin, Y., Maina, M. B., & Maina, A. B. Classification of Alzheimer’s Disease Using Cnn-Based Features and Vit-Global Contextual Patterns from MRI Images. Available at SSRN 4811438. [Google Scholar]
- Çakir, M., Yilmaz, M., Oral, M. A., Kazanci, H. Ö., & Oral, O. (2023). Accuracy assessment of RFerns, NB, SVM, and kNN machine learning classifiers in aquaculture. Journal of King Saud University-Science, 35(6), 102754. [CrossRef] [Google Scholar]
- Chanho Park, Sung Bae Cho. Evolutionary ensemble classifier for lymphoma and colon cancer classification. Conference: Evolutionary Computation, 2003, DOI: 10.1109/CEC.2003.1299385. [Google Scholar]
- Wang, Z., Zhou, Y., Takagi, T., Song, J., Tian, Y. S., & Shibuya, T. (2023). Genetic algorithm-based feature selection with manifold learning for cancer classification using microarray data. BMC bioinformatics, 24(1), 139. [CrossRef] [Google Scholar]
- Deng, X., Li, M., Deng, S., & Wang, L. (2022). Hybrid gene selection approach using XGBoost and multi-objective genetic algorithm for cancer classification. Medical & Biological Engineering & Computing, 60(3), 663–681. [CrossRef] [Google Scholar]
- Liu, X., Krishnan, A., & Mondry, A. (2005). An entropy-based gene selection method for cancer classification using microarray data. BMC bioinformatics, 6, 1–14. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.