Open Access
Issue
ITM Web Conf.
Volume 69, 2024
International Conference on Mobility, Artificial Intelligence and Health (MAIH2024)
Article Number 03004
Number of page(s) 9
Section Mobility
DOI https://doi.org/10.1051/itmconf/20246903004
Published online 13 December 2024
  1. F. Vanderhaegen, “Pedagogical learning supports based on human-systems inclusion applied to rail flow control”, Cogn. Technol. Work, 23, 193–202, 2021. [CrossRef] [Google Scholar]
  2. F. Vanderhaegen, J. Nelson, M. Wolff, R. Mollard, “From Human-Systems Integration to Human-Systems Inclusion for use-centred inclusive manufacturing control systems”, IFAC-PapersOnLine, 54(1), 249–254, 2021. [CrossRef] [Google Scholar]
  3. F. Vanderhaegen, V. Jiménez Díaz-Benito, “Opportunities and Threats of Interactions Between Humans and Cyber-Physical Systems - Integration and Inclusion Approaches for CPHS”, In : A. M. Annaswamy, P. P. Khargonekar, F. Lamnabhi-Lagarrigue, S. K Spurgeon (Eds), Cyber-Physical-Human Systems: Fundamentals and Applications, Wiley. pp. 71–90, 2023. [CrossRef] [Google Scholar]
  4. F. Vanderhaegen, “Every User Has Special Needs for Inclusive Mobility”, In: Kromker, H. (eds) HCI in Mobility, Transport, and Automotive Systems. HCII 2024, Lecture Notes in Computer Science, vol. 14733. Springer, Cham. https://doi.org/10.1007/978-3-031-60480-515, 2024. [Google Scholar]
  5. D. Romero, J. Stahre, T. Wuest, O. Noran, “Towards an Operator 4.0 typology: a humancentric perspective on the fourth industrial revolution technologies”, International Conference on Computers & Industrial Engineering (CIE46), At Tianjin, China, 2016. [Google Scholar]
  6. T. Ruppert, S. Jaskó, T. Holczinger, T. Abonyi, “Enabling Technologies for Operator 4.0: A Survey”, Applied Sciences, 8(9), 1650, https://doi.org/10.3390/app8091650, 2018. [CrossRef] [Google Scholar]
  7. A. Segura, H. V. Diez, I. Barandiaran, A. Arbelaiz, H. Álvarez, B. Simoes, J. Posada, A. Garcia-Alonso, J. Ugarte, “Visual computing technologies to support the Operator 4.0”, Computers & Industrial Engineering, In Press, https://doi.org/10.1016/i.cie.2018.11.060, 2018. [Google Scholar]
  8. D. Romero, J. Stahre, “Towards The Resilient Operator 5.0: The Future of Work in Smart Resilient Manufacturing Systems”, Procedia CIRP, 104, 1089–1094, 2021. [CrossRef] [Google Scholar]
  9. L. Zambiasi, R. Rabelo, S. Popov Zambiasi, et R. Lizot, “Supporting Resilient Operator 5.0: An Augmented Softbot Approach”, IFIP Advances in Information and Communication Technology, vol. 664 doi: 10.1007/978-3-031-16411-8_57, 2022. [Google Scholar]
  10. M. Ciccarelli, A. Papetti, M. Germani, “Exploring how new industrial paradigms affect the workforce: A literature review of Operator 4.0”, Journal of Manufacturing Systems, 70, 464–483, 2023. [CrossRef] [Google Scholar]
  11. C. Gallez, B. Motte-Baumvol, “Inclusive mobility or inclusive accessibility ? A European perspective”, Cuadernos Europeos de Deusto, Governing Mobility in Europe: Interdisciplinary Perspectives, pp. 79–104, 2018, ffhalshs-01683481f, 2017. [Google Scholar]
  12. C. Beniuk, J. Ward, P. J. Clarkson, “Applying Inclusive Design Principles in the Assessment”, Proceedings of the 1st European Conference on Design 4 Health, Sheffield, UK, July 13-15, pp. 22–36, 2011. [Google Scholar]
  13. S. L. Ballard & S. K. Dymond, S. K., “Acquired Severe Disabilities and Complex Health Care Needs: Access to Inclusive Education”, Research and Practice for Persons with Severe Disabilities, 41(3), 191–208, 2016. [CrossRef] [Google Scholar]
  14. Y. Mayer, L. D. Hershler, L. Y. Bulk, C. Cook, G. Belliveau, K. Xie, T. Jarus, “Promoting Inclusion for Disabled Students in Healthcare Education: Using Research-based Theatre to Enhance Knowledge and Empathy”, Nurse Education in Practice, https://doi.org/10.1016/j.nepr.2024.104085, 2024. [Google Scholar]
  15. A. Bonello, E. Francalanza, P. Refalo, «The realities of achieving a Smart, Sustainable, and Inclusive shopfloor in the age of Industry 5.0.”, Procedia Computer Science, 232, 2406–2415, 2024 [CrossRef] [Google Scholar]
  16. B. Raj, R. Roy, V. B. Rao, A. Chakrabarti, B. Ravi, B., M. K. Tiwari, P. Rao, M. Kumar, M. Lakkanna, “Inclusive Manufacturing: What it means and How it can accelerate growth of India?”, RITES Journal, Research, Review and Retrospective, 20(1), 12.1-12.10, 2018. [Google Scholar]
  17. D. Antonelli, D. Stadnicka, P. Litwin, P., “Inclusive manufacturing through the application of lean tools to sustainability issues”, Procedia CIRP, 122, 593–598, 2024. [CrossRef] [Google Scholar]
  18. I.-T. Hwang, T. M. Hallock, A. E. Schwartz, S. Roth, B. Pfeiffer, J. M. Kramer, “How people with intellectual and developmental disabilities on collaborative research teams use technology: A rapid scoping review”, Journal of Applied Research in Intellectual Disabilities, 35, 88–111, 2022. [CrossRef] [Google Scholar]
  19. S., A. Kamsu-Foguem, B. & Rumeau, P., “Decision support system for in-flight emergency events”, Cogn Tech Work, 20, 245–266, 2018 [CrossRef] [Google Scholar]
  20. E. Gronvall, M. Kyng, “On participatory design of home-based healthcare”, Cogn Tech Work 15, 389–401, 2013. [CrossRef] [Google Scholar]
  21. S., Z. Syed Mustapha & R. Mohamad, “Healthcare knowledge sharing among a community of specialized physicians”, Cogn Tech Work, 20, 105–124, 2018 [CrossRef] [Google Scholar]
  22. J. Hermelin, K. Bengtsson, R. Woltjer, R. et al., “Operationalising resilience for disaster medicine practitioners: capability development through training, simulation and reflection”, Cogn Tech Work, 22, 667–683, 2020 [CrossRef] [Google Scholar]
  23. A. de Haan, B. Steenbergen, J. Beumer & S. Noorderwier, “Communication of Handicapped Persons in a Multimedia Environment”, Cogn Tech Work, 1, 97–106, 1999 [CrossRef] [Google Scholar]
  24. J. E.H. Brown, Jodi Halpern, “AI chatbots cannot replace human interactions in the pursuit of more inclusive mental healthcare”, SSM - Mental Health, 1, https://doi.org/10.1016/j.ssmmh.2021.100017, 2021 [Google Scholar]
  25. E. Grassini, M. Buzzi, B. Leporini, B. et al., “A systematic review of chatbots in inclusive healthcare: insights from the last 5 years”, Univ Access Inf Soc, https://doi.org/10.1007/s10209-024-01118-x, 2024. [Google Scholar]
  26. F. Lanza, V. Seidita, A. Chella, “Agents and robots for collaborating and supporting physicians in healthcare scenarios”, Journal of Biomedical Informatics, 108, https://doi.org/10.1016/j.jbi.2020.103483, 2020. [Google Scholar]
  27. F. Vanderhaegen, «Toward a model of unreliability to study error prevention supports», Interact. Comput., vol. 11, no 5, p. 575–595, mai 1999, doi: 10.1016/S0953-5438(98)00044-7. [CrossRef] [Google Scholar]
  28. F. Vanderhaegen, «Cooperation and learning to increase the autonomy of ADAS», Cogn. Technol. Work, 14, 61–69, 2012. [CrossRef] [Google Scholar]
  29. S. Zieba, P. Polet, et F. Vanderhaegen, «Using adjustable autonomy and human-machine cooperation to make a human-machine system resilient - Application to a ground robotic system», Inf. Sci., 181(3), 379–397, 2011. [CrossRef] [Google Scholar]
  30. S. Shorey, C. Mattar, T. Lanz-Brian Pereira, M. Choolani, “A scoping review of ChatGPT's role in healthcare education and research”, Nurse Education Today, 135, https://doi.org/10.1016/j.nedt.2024.106121, 2024. [Google Scholar]
  31. P., Keikhosrokiani, N. Mustaffa, N. Zakaria et al., “Assessment of a medical information system: the mediating role of use and user satisfaction on the success of human interaction with the mobile healthcare system (iHeart)”, Cogn Tech Work, 22, 281–305, 2020. [CrossRef] [Google Scholar]
  32. A. Malik, M. Nguyen, P. Budhwar, S. Chowdhury, R. Gugnani, “Leveraging high-performance HRM practices and knowledge sharing for managing technological and social change in emerging market healthcare providers”, Technological Forecasting and Social Change, 205, https://doi.org/10.1016/j.techfore.2024.123463, 2024. [Google Scholar]
  33. F. Vanderhaegen, «Coopération homme-machine multiniveau entre une équipe d’opérateurs humains et des outils d’assistance : application au contrôle du trafic aérien», PhD thesis, Université de Valenciennes et du Hainaut-Cambrésis, https://uphf.hal.science/tel-03432825, 1993. [Google Scholar]
  34. F. Vanderhaegen, “Multilevel organization design: The case of the air traffic control”, Control Eng. Pract., 5(3), 391–399, 1997 [CrossRef] [Google Scholar]
  35. J. C. Pinheiro, P.-E. Dossou, J. Chang Junior, “Methods and concepts for elaborating a decision aided tool for optimizing healthcare medicines dispatching flows”, Procedia Manufact., 38, 209–216, 2019. [CrossRef] [Google Scholar]
  36. M. Le Pira, C. de Oliveira Leite Nascimento, N. Giuffrida, R. J. Tapia, F. Pilla, L. A. Tavasszy, “Innovations in last mile logistics: Towards inclusivity, resilience and sustainability”, Research in Transportation Economics, 105, https://doi.org/10.1016/j.retrec.2024.101446, 2024. [Google Scholar]
  37. G. T. Chao, C. Deal, E. N. Migliano, “Occupational exoskeletons: Supporting diversity and inclusion goals with technology”, Journal of Vocational Behavior, 153, https://doi.org/10.1016/j.jvb.2024.104016, 2024. [Google Scholar]
  38. H. Friedland, S. Snycerski, E. M. Palmer & S. Laraway, “The effectiveness of glare-reducing glasses on simulated nighttime driving performance in younger and older adults”, Cogn Tech Work, 19, 571–586, 2017. [CrossRef] [Google Scholar]
  39. T. K. Haavik, “Keep your coats on: augmented reality and sensework in surgery and surgical telemedicine”, Cogn Tech Work, 18, 175–191, 2016 [CrossRef] [Google Scholar]
  40. C. Chauvin, F. Said, et S. Langlois, “Augmented reality HUD vs. conventional HUD to perform a navigation task in a complex driving situation”, Cogn. Technol. Work, 25, 17–232, 2023. [Google Scholar]
  41. F. van den Oever, M. Fjeld, et B. Sxlrevik. “A Systematic Literature Review of Augmented Reality for Maritime Collaboration”, Int. J. Human-Computer Interact., doi: 10.1080/10447318.2023.2209838, 2023. [Google Scholar]
  42. G. M. Re, J. Oliver, et M. Bordegoni, «Impact of monitor-based augmented reality for on-site industrial manual operations», Cogn. Technol. Work, 18(2), 379–392, 2016 [CrossRef] [Google Scholar]
  43. S. Paiva, A. Amaral, J. Goncalves, R. Lima, L. Barreto, “Image Recognition-Based Architecture to Enhance Inclusive Mobility of Visually Impaired People in Smart and Urban Environments”, Sustainability 2022, 14(18), 11567, 2022. [Google Scholar]
  44. S. Shorey, C. Mattar, T. Lanz-Brian Pereira, M. Choolani, “A scoping review of ChatGPT's role in healthcare education and research”, Nurse Education Today, 135, https://doi.org/10.1016/j.nedt.2024.106121, 2024. [Google Scholar]
  45. T. A. Mohamad, A. Bastone, F. Bernhard, F. Schiavone, “How artificial intelligence impacts the competitive position of healthcare organizations”, Journal of Organizational Change Management, 36(8), 49–70, 2023. [CrossRef] [Google Scholar]
  46. R. Indrakumari, T. Poongodi, S. S. Vijayalakshmi, “Chapter 9 - Digital twin technologies for automated vehicles in smart healthcare systems”, In: R. K. Dhanaraj, A. K. Bashir, V. Rajasekar, B. Balusamy, P. Malik (eds), Digital Twin for Smart Manufacturing, Academic Press, pp. 161–184, 2023. [CrossRef] [Google Scholar]
  47. C. Ascone et F. Vanderhaegen, «Holistic Digital Twin Framework: Designing Human-Machine Systems with an Overall Situation Awareness», IFAC-Pap., 56(2), 7065–7070, 2023. [Google Scholar]
  48. D. Mourtzis, “Digital twin inception in the Era of industrial metaverse”, Front. Manuf. Technol., 3:1155735, doi: 10.3389/fmtec.2023.1155735, 2023. [CrossRef] [Google Scholar]
  49. Y. Yin, P. Zheng, C. Li, et L. Wang, “A State-of- the-art Survey on Augmented Reality-assisted Digital Twin for Futuristic Human-centric Industy Transformation”, Robot. Comput.-Integr. Manuf., 81, doi: 10.1016/j.rcim.2022.102515, 2023. [Google Scholar]
  50. A. M. Wahl, “Expanding the concept of simulator fidelity: the use of technology and collaborative activities in training maritime officers”, Cogn Tech Work, 22, 209–222, 2020. [CrossRef] [Google Scholar]
  51. Y. Li, D. V. Gunasekeran, N. R. Chandran, T. F. Tan, J. C. L. Ong, A. J. Thirunavukarasu, B. W. Polascik, R. Habash, K. Khaderi, D. S.W. Ting, “The next generation of healthcare ecosystem in the metaverse”, Biomedical Journal, 47(3), https://doi.org/10.1016/j.bj.2023.100679, 2024. [Google Scholar]
  52. A. Sestino, A. D'Angelo, “My doctor is an avatar! The effect of anthropomorphism and emotional receptivity on individuals' intention to use digital-based healthcare services”, Technological Forecasting and Social Change, 191, https://doi.org/10.1016/j.techfore.2023.122505, 2023 [Google Scholar]
  53. C. Ascone et F. Vanderhaegen, “Towards a Holistic Framework for Digital Twins of Human-Machine Systems”, IFAC-Pap., 55(29), 67–72, 2022. [Google Scholar]
  54. E. Laudante, “Industry 4.0, Innovation and Design. A new approach for ergonomic analysis in manufacturing system”, The Design Journal, 20, S2724–S2734, DOI: 10.1080/14606925.2017.1352784, 2017. [CrossRef] [Google Scholar]
  55. G. Zulch, “Evaluating human work in the digital factory - A new German guideline”, IFIP Intern Conf, on Advances in Production Management Systems (APMS), Sept., Ajaccio, France, 2024. [Google Scholar]
  56. N. Merat, B. Seppelt, T. Louw, J. Engstrom, J. D. Lee, E. Johansson, C. A. Green, S. Katazaki, C. Monk, M. Itoh, D. McGehee, T. Sunda, K. Unoura, T. Victor, A. Schieben, & A. Keinath, “The “Out-of-the-Loop” concept in automated driving: proposed definition, measures and implications”, Cogn Tech Work, 21, 87–98, 2019. [CrossRef] [Google Scholar]
  57. T. B. Sheridan, “Telerobotics, Automation, and Human Supervisory Control”, MIT Press, USA, 1992. [Google Scholar]
  58. T. Inagaki, “Design of human-machine interactions in light of domain-dependence of human-centered automation”, Cogn Tech Work, 8, 161–167, 2006. [CrossRef] [Google Scholar]
  59. J. Beer, A. Fisk, W. Rogers, «Toward a Framework for Levels of Robot Autonomy in Human-Robot Interaction», J. Hum.-Robot Interact., 3, doi: 10.5898/JHRI.3.2.Beer, 2014. [Google Scholar]
  60. N. Brandenburger, A. Naumann, A. & M. Jipp, “Task-induced fatigue when implementing high grades of railway automation”, Cogn Tech Work, 23, 273–283, 2021. [CrossRef] [Google Scholar]
  61. T. Inagaki, T. B. Sheridan, “A critique of the SAE conditional driving automation definition, and analyses of options for improvement”, Cogn Tech Work, 21, 569–578, 2018. [Google Scholar]
  62. F. Vanderhaegen, “Cooperative system organisation and task allocation: Illustration of task allocation in air traffic control”, Trav. Hum., 62, 197–222, 1999. [Google Scholar]
  63. D. Jouglet, S. Piechowiak & F. Vanderhaegen, “A shared workspace to support man-machine reasoning: application to cooperative distant diagnosis”, Cogn Tech Work 5, 127–139, 2003. [CrossRef] [Google Scholar]
  64. F. Vanderhaegen, “A non-probabilistic prospective and retrospective human reliability analysis method — application to railway system”, Reliab. Eng. Syst. Saf., 71(1), 1–13, 2001. [CrossRef] [Google Scholar]
  65. F. Vanderhaegen, «Human-error-based design of barriers and analysis of their uses», Cogn. Technol. Work, 12(2), 133–142, 2010. [CrossRef] [Google Scholar]
  66. E. M. Hickling et J. E. Bowie, «Applicability of human reliability assessment methods to human-computer interfaces», Cogn. Tech Work, 15(1), 19–27, 2013. [CrossRef] [Google Scholar]
  67. C. Kandemir, M. Celik, “A human reliability assessment of marine auxiliary machinery maintenance operations under ship PMS and maintenance 4.0 concepts”, Cogn. Tech Work, 22(3), 473–487, 2020. [CrossRef] [Google Scholar]
  68. J. Rosch et J. Vogel-Walcutt, “A review of eye-tracking applications as tools for training”, Cogn. Tech Work, 15, 313–327, 2013. [CrossRef] [Google Scholar]
  69. J. C. F. de Winter, Y. B. Eisma, C. D. D. Cabrall, P. A. Hancock, et N. A. Stanton, «Situation awareness based on eye movements in relation to the task environment», Cogn. Technol. Work, 21(1), 99–111, 2019. [CrossRef] [Google Scholar]
  70. F. Vanderhaegen, M. Wolff, et R. Mollard, «Non-conscious errors in the control of dynamic events synchronized with heartbeats: A new challenge for human reliability study», Saf. Sci., 129, doi: 10.1016/j.ssci.2020.104814, 2020. [CrossRef] [Google Scholar]
  71. F. Vanderhaegen, M. Wolff, et R. Mollard, “Repeatable effects of synchronizing perceptual tasks with heartbeat on perception-driven situation awareness”, Cogn. Syst. Res., 81, 80–92, 2023. [CrossRef] [Google Scholar]
  72. F. Vanderhaegen, M. Wolff, R. Mollard, “A heartbeat-based study of attention in the detection of digital alarms from focused and distributed supervisory control systems”, Cognition Technology & Work, 25, 119–134, 2023. [CrossRef] [Google Scholar]
  73. A. Habibovic, J. Andersson, C. Englund, “Automated vehicles: the opportunity to create an inclusive mobility system”, Automotive World, March 27, https://www.automotiveworld.com/articles/automated-vehicles-the-opportunity-to-create-an-inclusive-mobility-system/, 2019. [Google Scholar]
  74. H. R. Kulich, L. Wei, T. M. Crytzer, R. A. Cooper & A. M. Koontz, “Preliminary evaluation of an automated robotic transfer assist device in the home setting”, Disability and Rehabilitation: Assistive Technology, 18(5), 511–518, 2021. [Google Scholar]
  75. A. J. Hawkins, “Tesla’s Autopilot and Full Self-Driving linked to hundreds of crashes, dozens of deaths”, The Verge, April 24, https://www.theverge.com/2024/4/26/24141361/tesla-autopilot-fsd-nhtsa-investigation-report-crash-death, 2024. [Google Scholar]
  76. J. Valinski, “‘Complete meltdown’: Driverless cars in San Francisco stall causing a traffic jam”, CNN, August 14, https://edition.cnn.com/2023/08/14/business/driverless-cars-san-francisco-cruise/index.html, 2023. [Google Scholar]
  77. F. Vanderhaegen, “Dissonance Engineering: A New Challenge to Analyse Risky Knowledge When using a System”, Int. J. Comput. Commun. Control, 9(6), 750–759, 2014. [Google Scholar]
  78. F. Vanderhaegen, “A rule-based support system for dissonance discovery and control applied to car driving”, Expert Syst. Appl., 65, 361–371, 2016. [CrossRef] [Google Scholar]
  79. F. Vanderhaegen, S. Zieba, P. Polet, “A reinforced iterative formalism to learn from human errors and uncertainty”, Engineering Applications of Artificial Intelligence, 22 (4-5), 654–659, 2009. [CrossRef] [Google Scholar]
  80. F. Vanderhaegen, S. Zieba, P. Polet, S. Enjalbert, “A Benefit/Cost/Deficit (BCD) model for learning from human errors”, Reliability Engineering & System Safety, 96, (7), 757–766, 2011. [CrossRef] [Google Scholar]
  81. K.-A. Ouedraogo, S. Enjalbert, F. Vanderhaegen, “How to learn from the resilience of Human-Machine Systems?”, Engineering Applications of Artificial Intelligence, 26 (1), 24–34, 2013. [CrossRef] [Google Scholar]
  82. F. Vanderhaegen, S. Zieba, "Reinforced learning systems based on merged and cumulative knowledge to predict human actions", Information Sciences, 276, 146–159, 2014. [CrossRef] [Google Scholar]
  83. S. Enjalbert, F. Vanderhaegen, "A hybrid reinforced learning system to estimate resilience indicators", Engineering Applications of Artificial Intelligence 64, 295–301, 2017. [CrossRef] [Google Scholar]
  84. F. Vanderhaegen, P. Caulier, “A multi-viewpoint system to support abductive reasoning”, Information Sciences, 181, 5349–5363, 2011. [CrossRef] [Google Scholar]
  85. F. Vanderhaegen, “Weak Signal-Oriented Investigation of Ethical Dissonance Applied to Unsuccessful Mobility Experiences Linked to Human-Machine Interactions”, Science and Engineering Ethics, 27(1), 2. https://doi.org/10.1007/s11948-021-00284-y, 2021. [CrossRef] [Google Scholar]
  86. F. Vanderhaegen, “Heuristic-based method for conflict discovery of shared control between humans and autonomous systems - A driving automation case study”, Robot. Auton. Syst., 146, doi: 10.1016/j.robot.2021.103867, 2021 [CrossRef] [Google Scholar]
  87. F. Vanderhaegen, “Towards increased systems resilience: New challenges based on dissonance control for human reliability in Cyber- Physical&Human Systems”, Annu. Rev. Control, 44, 316–322, 2017. [CrossRef] [Google Scholar]
  88. F. Vanderhaegen, P. Richard, “MissRail: a platform dedicated to training and research in railway systems”, Proceedings of the international conference HCII, 22 - 27 June, Creta Maris, Heraklion, Crete, Greece, pp. 544–549, 2014. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.