Open Access
Issue |
ITM Web Conf.
Volume 69, 2024
International Conference on Mobility, Artificial Intelligence and Health (MAIH2024)
|
|
---|---|---|
Article Number | 03005 | |
Number of page(s) | 7 | |
Section | Mobility | |
DOI | https://doi.org/10.1051/itmconf/20246903005 | |
Published online | 13 December 2024 |
- J.V. Merlevede, S. Enjalbert, F. Henon, A.P. Baños, S. Ricci, F. Vanderhaegen, Expectations of train drivers for innovative driving cabin, IFAC-PapersOnLine 55, 144 (2022). 10.1016/j.ifacol.2022.10.246 [CrossRef] [Google Scholar]
- L. Habib, O. Oukacha, S. Enjalbert, Towards Tramway Safety by Managing Advanced Driver Assistance Systems depending on Grades of Automation, IFAC-PapersOnLine 54, 227 (2021). 10.1016/j.ifacol.2021.06.027 [CrossRef] [Google Scholar]
- M. Vagia, A.A. Transeth, S.A. Fjerdingen, A literature review on the levels of automation during the years. What are the different taxonomies that have been proposed?, Applied Ergonomics 53, 190 (2016). 10.1016/j.apergo.2015.09.013 [CrossRef] [Google Scholar]
- L. Bainbridge, in Analysis, Design and Evaluation of Man-Machine Systems (Elsevier, 1983), pp. 129–135, ISBN 978-0-08-029348-6, https://linkinghub.elsevier.com/retrieve/pii/B9780080293486500269 [CrossRef] [Google Scholar]
- N. Brandenburger, A. Naumann, On Track: A Series of Research about the Effects of Increasing Railway Automation on the Train Driver, IFAC-PapersOnLine 52, 288 (2019). 10.1016/j.ifacol.2019.12.115 [CrossRef] [Google Scholar]
- N. Brandenburger, A. Naumann, M. Jipp, Task- induced fatigue when implementing high grades of railway automation, Cognition, Technology & Work 23, 273 (2021). 10.1007/s10111-019-00613-z [CrossRef] [Google Scholar]
- F. Naujoks, S. Höfling, C. Purucker, K. Zeeb, From partial and high automation to manual driving: Relationship between non-driving related tasks, drowsiness and take-over performance, Accident Analysis & Prevention 121, 28 (2018). 10.1016/j.aap.2018.08.018 [CrossRef] [Google Scholar]
- M.A. Rad, L.M. Lefsrud, M. Hendry, D. Blais, Literature review on cognitive impacts of cab warning systems and train control technologies, Rail Research Conference (2021). [Google Scholar]
- C.D. Wickens, L. Onnasch, A. Sebok, D. Manzey, Absence of DOA Effect but No Proper Test of the Lumberjack Effect: A Reply to Jamieson and Skraaning (2019), Human Factors: The Journal of the Human Factors and Ergonomics Society 62, 530 (2020). 10.1177/0018720820901957 [CrossRef] [Google Scholar]
- S. Nordhoff, J.D. Lee, S.C. Calvert, S. Berge, M. Hagenzieker, R. Happee, (Mis-)use of standard Autopilot and Full Self-Driving (FSD) Beta: Results from interviews with users of Tesla’s FSD Beta, Frontiers in Psychology 14, 1101520 (2023). 10.3389/fp-syg.2023.1101520 [CrossRef] [Google Scholar]
- M.R. Endsley, Ironies of artificial intelligence, Ergonomics 66, 1656 (2023). 10.1080/00140139.2023.2243404 [CrossRef] [Google Scholar]
- G.M. Scheepmaker, R.M. Goverde, L.G. Kroon, Review of energy-efficient train control and timetabling, European Journal of Operational Research 257, 355 (2017). 10.1016/j.ejor.2016.09.044 [CrossRef] [MathSciNet] [Google Scholar]
- Hainan Zhu, Xubin Sun, Lei Chen, Shigen Gao, Hairong Dong, Analysis and design of Driver Advisory System (DAS) for energy-efficient train operation with real-time information, in 2016 IEEE International Conference on Intelligent Rail Transportation (ICIRT) (IEEE, Birmingham, United Kingdom, 2016), pp. 99–104, ISBN 978-1-5090-1555-9, http://ieeexplore.ieee.org/document/7588717/ [Google Scholar]
- C. Fu, P. Sun, J. Zhang, K. Yan, Q. Wang, X. Feng, An energy-efficient train control approach with dynamic efficiency of the traction system, IET Intelligent Transport Systems 17, 1182 (2023). 10.1049/itr2.12351 [CrossRef] [Google Scholar]
- Z. Yao, X. Sun, L. Yang, Z. Yu, X. Guo, W. Zhang, Driver Advisory System for Freight Train Based on Energy-saving Operation Optimization, in 2022 China Automation Congress (CAC) (IEEE, Xiamen, China, 2022), pp. 1532–1537, ISBN 978-1-66546-533-5, https://ieeexplore.ieee.org/document/10055694/ [CrossRef] [Google Scholar]
- M.R. Endsley, Supporting Human-AI Teams:Transparency, explainability, and situation awareness, Computers in Human Behavior 140, 107574 (2023). 10.1016/j.chb.2022.107574 [CrossRef] [Google Scholar]
- Y. Lu, H. Zheng, S. Chand, W. Xia, Z. Liu, X. Xu, L. Wang, Z. Qin, J. Bao, Outlook on human-centric manufacturing towards Industry 5.0, Journal of Manufacturing Systems 62, 612 (2022). 10.1016/j.jmsy.2022.02.001 [CrossRef] [Google Scholar]
- H. Ning, R. Yin, A. Ullah, F. Shi, A Survey on Hybrid Human-Artificial Intelligence for Autonomous Driving, IEEE Transactions on Intelligent Transportation Systems 23, 6011 (2022). 10.1109/TITS.2021.3074695 [CrossRef] [Google Scholar]
- F. Vanderhaegen, Heuristic-based method for conflict discovery of shared control between humans and autonomous systems - A driving automation case study, Robotics and Autonomous Systems 146, 103867 (2021). 10.1016/j.robot.2021.103867 [CrossRef] [Google Scholar]
- F. Flammini, L. De Donato, A. Fantechi, V. Vittorini, in Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification, edited by S. Collart-Dutilleul, A.E. Haxthausen, T. Lecomte (Springer International Publishing, Cham, 2022), Vol. 13294, pp. 192–208, ISBN 978-3-031-05813-4 978-3-031-05814-1, series Title: Lecture Notes in Computer Science, https://link.springer.com/10.1007/978-3-031-05814-1_14 [CrossRef] [Google Scholar]
- T. Dang, S. Bhattacharya, J. Crumbley, A Review Study on the Use of Oculometry in the Assessment of Driver Cognitive States, in SoutheastCon 2021 (IEEE, Atlanta, GA, USA, 2021), pp. 1–7, ISBN 978-1-66540-379-5, https://ieeexplore.ieee.org/document/9401905/ [MathSciNet] [Google Scholar]
- Z. Zhou, Z. Fang, J. Wang, J. Chen, H. Li, L. Han, Z. Zhang, Driver vigilance detection based on deep learning with fused thermal image information for public transportation, Engineering Applications of Artificial Intelligence 124, 106604 (2023). 10.1016/j.engappai.2023.106604 [CrossRef] [Google Scholar]
- A. Lambay, Y. Liu, P.L. Morgan, Z. Ji, Machine learning assisted human fatigue detection, monitoring, and recovery: Review, Digital Engineering p. 100004 (2024). 10.1016/j.dte.2024.100004 [CrossRef] [Google Scholar]
- V.J. Verstappen, E.N. Pikaar, R.G. Zon, Assessing the impact of driver advisory systems on train driver workload, attention allocation and safety performance, Applied Ergonomics 100, 103645 (2022). 10.1016/j.apergo.2021.103645 [CrossRef] [Google Scholar]
- B. Wandtner, N. Schomig, G. Schmidt, Secondary task engagement and disengagement in the context of highly automated driving, Transportation Research Part F: Traffic Psychology and Behaviour 58, 253 (2018). 10.1016/j.trf.2018.06.001 [CrossRef] [Google Scholar]
- G. Lu, J. Zhai, P. Li, F. Chen, L. Liang, Measuring drivers’ takeover performance in varying levels of automation: Considering the influence of cognitive secondary task, Transportation Research Part F: Traffic Psychology and Behaviour 82, 96 (2021). 10.1016/j.trf.2021.08.005 [CrossRef] [Google Scholar]
- N. Dadashi, A. Scott, J. Wilson, A. Mills, in Rail Human Factors: Supporting reliability, safety and cost reduction (Taylor & Francis, 2013), ISBN 978-1-138-00037-7 978-0-203-75972-1, http://www.crcnetbase.com/doi/book/10.1201/b13827 [Google Scholar]
- K. Panou, P. Tzieropoulos, D. Emery, Railway driver advice systems: Evaluation of methods, tools and systems, Journal of Rail Transport Planning & Management 3, 150 (2013). 10.1016/j.jrtpm.2013.10.005 [CrossRef] [Google Scholar]
- V. Verstappen, The impact of innovative devices in the train cab on train driver workload and distraction, in Sixth International Human Factors Rail Conference. London, UK (2017) [Google Scholar]
- T. Wada, Simultaneous achievement of driver assistance and skill development in shared and cooperative controls, Cognition, Technology & Work 21, 631 (2019). 10.1007/s10111-018-0514-y [CrossRef] [Google Scholar]
- S. Tada, K. Sonoda, T. Wada, Simultaneous Achievement of Workload Reduction and Skill Enhancement in Backward Parking by Haptic Guidance, IEEE Transactions on Intelligent Vehicles 1, 292 (2016). 10.1109/TIV.2017.2686088 [CrossRef] [Google Scholar]
- T. Wada, K. Yoshimura, S.I. Doi, H. Youhata, K. Tomiyama, Proposal of an eco-driving assist system adaptive to driver’s skill, in 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC) (IEEE, Washington, DC, USA, 2011), pp. 1880–1885, ISBN 978-1-4577-2197-7 978-1-4577-2198-4 978-1-4577-2196-0, http://ieeexplore.ieee.org/document/6083034/ [Google Scholar]
- J. Huang, Y. Cai, J. Li, X. Chen, J. Fan, Toward Intelligent Train Driving through Learning Human Experience, in 2019 1st International Conference on Industrial Artificial Intelligence (IAI) (IEEE, Shenyang, China, 2019), pp. 1–6, ISBN 978-1-72813-593-9, https://ieeexplore.ieee.org/document/8850749/ [Google Scholar]
- F. Vanderhaegen, Pedagogical learning supports based on human-systems inclusion applied to rail flow control, Cognition, Technology & Work 23, 193 (2021). 10.1007/s10111-019-00602-2 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.