Open Access
Issue
ITM Web Conf.
Volume 69, 2024
International Conference on Mobility, Artificial Intelligence and Health (MAIH2024)
Article Number 04007
Number of page(s) 4
Section Transactions
DOI https://doi.org/10.1051/itmconf/20246904007
Published online 13 December 2024
  1. P. Loktongbam, D. Pal, A. K. Bandyopadhyay, et C. Koley, «A Brief Review on mm-Wave Antennas for 5G and Beyond Applications», IETE Technical Review, vol. 40, no 3, p. 397–422, mai 2023, doi: 10.1080/02564602.2022.2121771. [CrossRef] [Google Scholar]
  2. M. H. Dahri, M. H. Jamaluddin, M. I. Abbasi, et M. R. Kamarudin, «A Review of Wideband Reflectarray Antennas for 5G Communication Systems», IEEE Access, vol. 5, p. 17803–17815, 2017, doi: 10.1109/ACCESS.2017.2747844. [CrossRef] [Google Scholar]
  3. J. Khan, S. Ullah, U. Ali, F. A. Tahir, I. Peter, et L. Matekovits, «Design of a Millimeter-Wave MIMO Antenna Array for 5G Communication Terminals», Sensors, vol. 22, no 7, p. 2768, avr. 2022, doi: 10.3390/s22072768. [CrossRef] [Google Scholar]
  4. Marzouk, M.; Nejdi, I.H.; Rhazi, Y.; Saih, M. Multiband and Wide Band Octagonal Fractal Antenna for Telecommunication Applications. In Proceedings of the 2022 8th International Conference on Optimization and Applications (ICOA), Genoa, Italy, 6-7 October 2022 [Google Scholar]
  5. M. Marzouk, I. H. Nejdi, Y. Rhazi and M. Saih, "A new multi-band fractal antenna using a triangular measured on the 1GHz to 6GHz band", 2022 2nd International Conference on Innovative Research inApplied Science Engineering and Technology (IRASET), pp. 1–5, 2022. [Google Scholar]
  6. L. C. Paul et H. K. Saha, «A Wideband Microstrip Line Feed Slotted Patch Antenna for 28 GHz 5G Applications», in 2021 International Conference on Electronics, Communications and Information Technology (ICECIT), Khulna, Bangladesh: IEEE, sept. 2021, p. 1–4. doi: 10.1109/ICECIT54077.2021.9641230. [Google Scholar]
  7. P. Merlin Teresa et G. Umamaheswari, «Compact Slotted Microstrip Antenna for 5G Applications Operating at 28 GHz», IETE Journal of Research, vol. 68, no 5, p. 3778–3785, sept. 2022, doi: 10.1080/03772063.2020.1779620. [CrossRef] [Google Scholar]
  8. A. F. Kaeib, N. M. Shebani, et A. R. Zarek, «Design and Analysis of a Slotted Microstrip Antenna for 5G Communication Networks at 28 GHz», in 2019 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Sousse, Tunisia: IEEE, mars 2019, p. 648–653. doi: 10.1109/STA.2019.8717292. [Google Scholar]
  9. S.-E. Didi, I. Halkhams, M. Fattah, Y. Balboul, S. Mazer, et M. E. Bekkali, «Design of a microstrip antenna patch with a rectangular slot for 5G applications operating at 28 GHz», TELKOMNIKA, vol. 20, no 3, p. 527, juin 2022, doi: 10.12928/telkomnika.v20i3.23159. [CrossRef] [Google Scholar]
  10. R. Malik, P. Singh, H. Ali, et T. Goel, «A Star Shaped Superwide Band Fractal Antenna for 5G Applications», in 2018 3rd International Conference for Convergence in Technology (I2CT), Pune: IEEE, avr. 2018, p. 1–6. doi: 10.1109/I2CT.2018.8529404. [Google Scholar]
  11. P. Kumar et al., «An Ultra-Compact 28 GHz ArcShaped Millimeter-Wave Antenna for 5G Application», Micromachines, vol. 14, no 1, p. 5, déc. 2022, doi: 10.3390/mi14010005. [CrossRef] [Google Scholar]
  12. S. Gundala, V. SrinivasaBaba, A. Vijaya, et S. Machanna, «Compact High Gain Hexagonal Fractal Antenna for 5G applications», in 2019 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), GOA, India: IEEE, déc. 2019, p. 1–7. doi: 10.1109/ANTS47819.2019.9118053. [Google Scholar]
  13. M. S. Maharana, G. P. Mishra, et B. B. Mangaraj, «Design and simulation of a Sierpinski carpet fractal antenna for 5G commercial applications», in 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai: IEEE, mars 2017, p. 1718–1721. doi: 10.1109/WiSPNET.2017.8300056. [Google Scholar]
  14. W. A. Awan, M. Alibakhshikenari, et E. Limiti, «Design and Analysis of a Simple Miniaturized Fractal Antenna for 5G Ka-Band Applications», in 2021 IEEE Asia-Pacific Microwave Conference (APMC), Brisbane, Australia: IEEE, nov. 2021, p. 22–24. doi: 10.1109/APMC52720.2021.9661859. [Google Scholar]
  15. K. Cuneray, N. Akcam, T. Okan, et G. O. Arican, «28/38 GHz dual-band MIMO antenna with wideband and high gain properties for 5G applications», AEU - International Journal of Electronics and Communications, vol. 162, p. 154553, avr. 2023, doi: 10.1016/j.aeue.2023.154553. [CrossRef] [Google Scholar]
  16. M. Khalid et al., «4-Port MIMO Antenna with Defected Ground Structure for 5G Millimeter Wave Applications», Electronics, vol. 9, no 1, p. 71, janv. 2020, doi: 1O.339O/electronics9O1O071. [CrossRef] [Google Scholar]
  17. A. Khabba et al., «A new miniaturized wideband self-isolated two-port MIMO antenna for 5G millimeter-wave applications», TELKOMNIKA, vol. 21, no 3, p. 630, févr. 2023, doi: 10.12928/telkomnika.v21i3.24139. [CrossRef] [Google Scholar]
  18. P. Sharma, R. N. Tiwari, P. Singh, P. Kumar, et B. K. Kanaujia, «MIMO Antennas: Design Approaches, Techniques and Applications», Sensors, vol. 22, no 20, p. 7813, oct. 2022, doi: 10.3390/s22207813. [CrossRef] [Google Scholar]
  19. A. Nicolas, J.-L. Barrat, J. Rottler, Effects of inertia on the steady-shear rheology of disordered solids. Phys. Rev. Lett. 116, 058303 (2016) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.