Open Access
Issue |
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
|
|
---|---|---|
Article Number | 01010 | |
Number of page(s) | 8 | |
Section | Traffic Prediction and Analysis | |
DOI | https://doi.org/10.1051/itmconf/20257001010 | |
Published online | 23 January 2025 |
- Baidu Maps. 2023 China urban transportation report. Baidu, March 1, 2024. Retrieved on August 13, 2024. Available at: https://jiaotong.baidu.com/cms/reports/traffic/2023/index.html. [Google Scholar]
- Z. Chen, X. Luo, T. Wang, W. Wang, & W. Zhao. Deep reinforcement learning-based lstm model for traffic flow forecasting in internet of vehicles. In Z. Deng (Ed.), Proc. 2021 Chinese Intelligent Automation Conf. Lect. Notes Electr. Eng., 801, Springer, Singapore (2022). [Google Scholar]
- Y. Zhao, & Y. B. Zhou. Application research of reinforcement learning in traffic flow prediction. Inf. Comput. (Theor. Ed.), 36 (03), 136-138 (2024). [Google Scholar]
- S. C. Rajkumar, J. Deborah L., & P. Vijayakumar. optimized traffic flow prediction based on cluster formation and reinforcement learning. Int. J. Commun. Syst. 33, e4178 (2019). [Google Scholar]
- K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, & Y. Bengio. Learning phrase representations using RNN Encoder-Decoder for statistical machine translation. In Proc. 2014 Conf. Empirical Methods Nat. Lang. Process. (EMNLP), 1724–1734, Doha, Qatar. Assoc. Comput. Linguist. (2014). [CrossRef] [Google Scholar]
- M. M. Tan, X. G. Cheng, & K. Zhou. Short-term traffic flow prediction based on weighted combination of arima and grey model. Comput. Technol. Dev., 26 (11), 77-81 (2016). [Google Scholar]
- Y. Liu, X. Li, & X. Shao. Short-term traffic flow prediction based on lagrange support vector regression. Comput. Commun., 1249–1254 (2007). [Google Scholar]
- B. Cao, & M. T. Gao. Research on the short-term traffic flow prediction based on LSTM. Mod. Comput., (25), 5–9 (2018). [Google Scholar]
- L. Li, Q. M. Zhang, J. H. Zhao, & Y. W. Nie. Short-term traffic flow prediction method of different periods based on improved CNN-LSTM. J. Appl. Sci., 39 (2), 185198 (2021). [Google Scholar]
- X. Chen, J. Wang, & K. Xie. TrafficStream: A streaming traffic flow forecasting framework based on graph neural networks and continual learning. int. Joint Conf. Artif. Intell., (2021).T. Haarnoja, H. Tang, P. Abbeel, & S. Levine. Reinforcement Learning with Deep Energy-based Policies. In Proc. 35th Int. Conf. Mach. Learn., 1352–1361 (2018). [Google Scholar]
- Y. Li, J. Hao, & D. Zha. Graph-based reinforcement learning for traffic signal control. Proc. AAAI Conf. Artif. Intell., 33 (01), 4167-4174 (2019). [Google Scholar]
- F. Zheng, H. X. Liu, & F. Zheng. A reinforcement learning approach for adjusting dynamic traffic control parameters to manage traffic incidents. Transp. Res. C Emerg. Technol., 86, 598-615 (2018). [Google Scholar]
- O. Loyola-González. Black-box vs. White-box: Understanding their Advantages and Weaknesses from a Practical Point of View. IEEE Access, 7, 154096-154113 (2019). [CrossRef] [Google Scholar]
- S. Chen, Z. He, & L. Sun. A DL Approach to the prediction of traffic flow with realtime data and its implementation in microservices. IEEE Trans. Intell. Transport. Syst., 22 (9), 5657-5668 (2021). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.