Open Access
Issue
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
Article Number 01011
Number of page(s) 9
Section Traffic Prediction and Analysis
DOI https://doi.org/10.1051/itmconf/20257001011
Published online 23 January 2025
  1. Z. Wu, S. Pan, G. Long, J. Jiang, C. Zhang, Graph wavenet for deep spatial-temporal graph modeling. Phys. Rev. Lett. 116, 058303 (2016). [CrossRef] [PubMed] [Google Scholar]
  2. J. Zhang, Y. Zheng, D. Qi., DNN-based prediction model for spatio-temporal data. In Proc. 24th ACM SIGSPATIAL Int. Conf. Adv. Geogr. Inf. Syst., 1–4 (2016). [Google Scholar]
  3. L. Zhao, Y. Song, C. Zhang, T-GCN: A temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 21, 3848-3858 (2019). [Google Scholar]
  4. C. Zhang, P. Patras, Long-term mobile traffic forecasting using deep spatio-temporal neural networks. In Proc. 18th ACM Int. Symp. Mobile Ad Hoc Netw. Comput., 231240 (2018). [Google Scholar]
  5. Z. Zhang, L. Lim, X. Lin, Multistep speed prediction on traffic networks: A deep learning approach considering spatio-temporal dependencies. Transp. Res. Part C Emerg. Technol. 105, 297-322 (2019). [CrossRef] [Google Scholar]
  6. Z. Liu, R. Zhang, C. Wang, Z. Xiao, H. Jiang, A graph attention fusion network for event-driven traffic speed prediction. IEEE Trans. Netw. Sci. Eng. 1–1 (2022). [Google Scholar]
  7. C. Zheng, X. Fan, C. Wang, J. Qi, GMAN: A graph multi-attention network for traffic prediction. Phys. Rev. Lett. 116, 058303 (2016). [CrossRef] [PubMed] [Google Scholar]
  8. Z. Qiu, T. Zhu, Y. Jin, A graph attention fusion network for event-driven traffic speed prediction. Inf. Sci. 622, 405-423 (2023). [CrossRef] [Google Scholar]
  9. W. Zhang, S. Yuan, J. Tao, C. Zhou, J. Aheti, Highway TFP based on Bi-LSTM considering multiple factors. Comput. Syst. Appl. 30, 184-190 (2021). [Google Scholar]
  10. J. Choi, H. Choi, J. Hwang, N. Park, Graph neural controlled differential equations for traffic forecasting. Phys. Rev. Lett. 116, 058303 (2016). [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.