Open Access
Issue
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
Article Number 01019
Number of page(s) 9
Section Traffic Prediction and Analysis
DOI https://doi.org/10.1051/itmconf/20257001019
Published online 23 January 2025
  1. S. Aryal, N. Baine, Real-time sensor fusion for OD in autonomous driving, Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (2019). [Google Scholar]
  2. Y. Xu, X. Liu, J. Zhang, H. Wang, WOG-YOLO: Whale Optimization-based YOLO for OD in autonomous driving, Sci. Rep., 13, 30409 (2023). [Google Scholar]
  3. D. Bhanushali, R. Relyea, K. Manghi, A. Vashist, C. Hochgraf, A. Ganguly, A. Kwasinski, M. E. Kuhl, R. Ptucha, LiDAR-Camera fusion for 3D OD, IS&T Int. Symp. Electron. Imaging 2020, Autonomous Vehicles and Machines Conf., pp. 257–1258 (2020). [Google Scholar]
  4. B. Li, Y. Wang, G. Papaioannou, H. Du, Sensor fusion and advanced controller for connected and automated vehicles, Sensors, 23 (16), 7015 (2023). [CrossRef] [Google Scholar]
  5. F. Yin, J. Chen, L. Zhang, W. Huang, Semi-supervised learning framework for adversarial robustness in OD, Data Sci. Artif. Intell., 3 (1), 24 (2024). [Google Scholar]
  6. Y. Li, H. Zhang, M. Liu, Z. Wang, Domain adaptation for OD in autonomous driving with adversarial learning, arXiv preprint arXiv:2307.09676 (2024). [Google Scholar]
  7. J. Yi, Y. Chen, Kalman filter-based defense against adversarial attacks in multi-object tracking for autonomous driving, 2023 IEEE Int. Conf. Ind. Technol. (ICIT), pp. 18421847 (2023). [Google Scholar]
  8. M. Ghasemieh, R. Kashef, A survey on deep learning approaches for autonomous driving, Transp. Eng., 9, 100115 (2022). [Google Scholar]
  9. Y. Wang, X. Zhang, L. Zhu, S. Li, Y. Wu, Multi-sensor fusion in automated driving: A survey, arXiv preprint arXiv:2106.12735 (2021). [Google Scholar]
  10. R. Kumar, M. A. Naveed, S. K. Bhavani, A. Roy, YOLOv3-based OD in hazy weather conditions for autonomous vehicles, Proceedings of the 2022 International Conference on Intelligent Systems and Computer Vision (ISCV), pp. 161–167 (2022). [Google Scholar]
  11. S. Kim, H. Lee, J. Park, Efficient deep learning-based OD for autonomous driving in real-time environments, J. Korean Inst. Commun. Inf. Sci., 45(4), 722–731 (2020). [Google Scholar]
  12. X. Chen, C. Liu, B. Li, L. Lu, J. Tang, D. Zhou, Adversarial attack and defense in OD systems for autonomous vehicles, Inf. Sci., 384, 157-168 (2017). [CrossRef] [Google Scholar]
  13. A. Harada, K. Takeda, H. Uchida, S. Terada, Augmented reality system for enhancing decision-making in autonomous vehicles, 2019 Int. Conf. Field-Programmable Technol. (ICFPT), pp. 386–389 (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.