Open Access
Issue |
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
|
|
---|---|---|
Article Number | 01023 | |
Number of page(s) | 6 | |
Section | Traffic Prediction and Analysis | |
DOI | https://doi.org/10.1051/itmconf/20257001023 | |
Published online | 23 January 2025 |
- S. Kaur, J. Singla, L. Nkenyereye, S. Jha, D. Prashar, G. P. Joshi, … & S. R. Islam. Medical diagnostic systems using artificial intelligence (ai) algorithms: Principles and perspectives. IEEE Access, 8, 228049-228069 (2020). [CrossRef] [Google Scholar]
- R. C. Rial. AI in analytical chemistry: Advancements, challenges, and future directions. Talanta, 125949 (2024). [CrossRef] [Google Scholar]
- Z. J. Baum, X. Yu, P. Y. Ayala, Y. Zhao, S. P. Watkins, & Q. Zhou. Artificial intelligence in chemistry: current trends and future directions. Journal of Chemical Information and Modeling, 61(7), 3197–3212 (2021). [CrossRef] [Google Scholar]
- A. I. Awad, A. Babu, E. Barka, & K. Shuaib. AI-powered biometrics for Internet of Things security: A review and future vision. Journal of Information Security and Applications, 82, 103748 (2024). [CrossRef] [Google Scholar]
- N. A. A. Jabr. Pattern Recognition of Human Fingerprint Utilizing an Efficient Artificial Intelligence Algorithm. In International Conference on Signals, Machines, and Automation (pp. 569–578). Singapore: Springer Nature Singapore (2022, August). [Google Scholar]
- F. Z. Lian, J. D. Huang, J. X. Liu, G. Chen, J. H. Zhao, & W. X. Kang. FedFV: A personalized federated learning framework for finger vein authentication. Machine Intelligence Research, 20(5), 683–696 (2023). [CrossRef] [Google Scholar]
- GeeksforGeeks. Collaborative Learning - Federated Learning (2024, March 20). [Google Scholar]
- C. Wang, Y. Lu, & A. V. Vasilakos. Scalable Federated Learning for Fingerprint Recognition Algorithm. In 2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom) (pp. 181–188). IEEE (2023, November). [Google Scholar]
- A. Soni, M. Sandhya, & Y. S. Rao. Privacy Preserving Fingerprint Classification Using Federated Learning. In International Conference on Deep Learning, Artificial Intelligence and Robotics (pp. 71–80). Cham: Springer Nature Switzerland (2023, December). [Google Scholar]
- H. Mu, J. Guo, C. Han, & L. Sun. PAFedFV: Personalized and Asynchronous Federated Learning for Finger Vein Recognition. arXiv preprint arXiv:2404.13237 (2024). [Google Scholar]
- Z. Guo, J. Guo, Y. Huang, Y. Zhang, & H. Ren. DDP-FedFV: A Dual-Decoupling Personalized Federated Learning Framework for Finger Vein Recognition. Sensors (Basel, Switzerland), 24(15) (2024). [Google Scholar]
- Y. Qiu, et al. Ifvit: Interpretable fixed-length representation for fingerprint matching via vision transformer. arXiv preprint arXiv:2404.08237 (2024). [Google Scholar]
- B. G. Buchanan, & R. G. Smith. Fundamentals of expert systems. Annual review of computer science, 3(1), 23–58 (1988). [CrossRef] [Google Scholar]
- A. Khan, M. ten Thij, & A. Wilbik. Communication-efficient vertical federated learning. Algorithms, 15 (8), 273 (2022). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.