Open Access
Issue |
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 8 | |
Section | Machine Learning in Healthcare and Finance | |
DOI | https://doi.org/10.1051/itmconf/20257002001 | |
Published online | 23 January 2025 |
- D. P. Kingma, M. Welling, Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013). [Google Scholar]
- K. Sohn, H. Lee, X. Yan, Learning structured output representation using deep conditional generative models. Adv. Neural Inf. Process. Syst. 28 (2015). [Google Scholar]
- A. Razavi, A. Van den Oord, O. Vinyals, Generating diverse high-fidelity images with vq-vae-2. Adv. Neural Inf. Process. Syst. 32 (2019). [Google Scholar]
- B. Dai, D. Wipf, Diagnosing and enhancing VAE models. arXiv preprint arXiv:1903.05789 (2019). [Google Scholar]
- R. Child, Very deep vaes generalize autoregressive models and can outperform them on images. arXiv preprint arXiv:2011.10650 (2020). [Google Scholar]
- A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, I. Sutskever, Zero-shot text-to-image generation. In Proceedings of the International Conference on Machine Learning (pp. 8821-8831), PMLR, (2021, July). [Google Scholar]
- P. Esser, R. Rombach, B. Ommer, Taming transformers for high-resolution image synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12873-12883), (2021). [Google Scholar]
- D. Zheng, S. H. Tan, X. Zhang, Z. Shi, K. Ma, C. Bao, An unsupervised deep learning approach for real-world image denoising. In Proceedings of the International Conference on Learning Representations (2021). [Google Scholar]
- M. Prakash, A. Krull, F. Jug, Fully unsupervised diversity denoising with convolutional variational autoencoders. arXiv preprint arXiv:2006.06072 (2020). [Google Scholar]
- R. Pucci, C. Micheloni, N. Martinel, UW-CVGAN: UnderWater image enhancement with capsules vectors quantization. arXiv preprint arXiv:2302.01144 (2023). [Google Scholar]
- Y. Zeng, Z. Wang, Y. Liu, T. Zeng, X. Liu, X. Luo, B. Zeng, Multiple latent space mapping for compressed dark image enhancement. arXiv preprint arXiv:2403.07622 (2024). [Google Scholar]
- X. Wu, Z. Lai, J. Zhou, X. Hou, W. Pedrycz, L. Shen, Light-aware contrastive learning for low-light image enhancement. ACM Trans. Multimedia Comput. Commun. Appl. (2024). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.