Open Access
Issue
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
Article Number 02021
Number of page(s) 6
Section Machine Learning in Healthcare and Finance
DOI https://doi.org/10.1051/itmconf/20257002021
Published online 23 January 2025
  1. F.A. Khan, et al. Detection and prediction of diabetes using data mining: a comprehensive review. IEEE Access 9, 43711-43735 (2021) [CrossRef] [Google Scholar]
  2. World Health Organization, “Diabetes”, 2023, Retrieved on 2024, Retrieved from: https://www.who.int/news-room/fact-sheets/detail/diabetes [Google Scholar]
  3. R. Kumar, et al. A review on diabetes mellitus: type1 & Type2. World Journal of Pharmacy and Pharmaceutical Sciences 9(10), 838–850 (2020) [Google Scholar]
  4. H. Lai, et al. Predictive models for diabetes mellitus using machine learning techniques. BMC endocrine disorders 19, 1-9 (2019) [CrossRef] [PubMed] [Google Scholar]
  5. Q. Zou, et al. Predicting diabetes mellitus with machine learning techniques. Frontiers in genetics, 9, 515 (2018) [CrossRef] [PubMed] [Google Scholar]
  6. L.Y. Zhang, et al. Machine learning for characterizing risk of type 2 diabetes mellitus in a rural Chinese population: The Henan Rural Cohort Study. Scientific reports, 10(1), 4406 (2020). [CrossRef] [Google Scholar]
  7. B. Mahesh, Machine learning algorithms-a review. International Journal of Science and Research, 9(1), 381–386 (2020). [Google Scholar]
  8. H. Wu, et al. Type 2 diabetes mellitus prediction model based on data mining. Informatics in Medicine Unlocked, 10, 100-107 (2018). [CrossRef] [Google Scholar]
  9. J.W. Smith, “Pima Indians Diabetes Database”, 2016, Retrieved on 2024, Retrieved from: https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database [Google Scholar]
  10. W.Q. Chen, et al. A hybrid prediction model for type 2 diabetes using K-means and decision tree. IEEE international conference on software engineering and service science (2017) [Google Scholar]
  11. L. Breiman, Random forests. Machine learning, 45, 5-32 (2001). [Google Scholar]
  12. M. Soni and V. Sunita, Diabetes prediction using machine learning techniques. International Journal of Engineering Research & Technology, 9(9), 2278–0181 (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.