Open Access
Issue |
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
|
|
---|---|---|
Article Number | 02022 | |
Number of page(s) | 9 | |
Section | Machine Learning in Healthcare and Finance | |
DOI | https://doi.org/10.1051/itmconf/20257002022 | |
Published online | 23 January 2025 |
- A. Esteva, B. Kuprel, R.A. Novoa, J. Ko, S.M. Swetter, H.M. Blau & S. Thrun, Dermatologist-level classification of skin cancer with deep neural networks. nature, 542(7639), 115–118 (2017) [CrossRef] [Google Scholar]
- V. Gulshan, L. Peng, M. Coram, M.C. Stumpe, D. Wu, A. Narayanaswamy, S. Venugopalan, K. Widner, T. Madams, J. Cuadros, R. Kim, R. Raman, P.C. Nelson, J.L. Mega & D.R. Webster, Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA: The Journal of the American Medical Association, 316(22), 2402–2410 (2016) [CrossRef] [Google Scholar]
- R. Miotto, J. Li, B.A. Kidd & J.T. Dudley, Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records. Scientific Reports, 6(1), 26094–26094 (2016) [CrossRef] [Google Scholar]
- A. Rajkomar, E. Oren, K. Chen, A.M. Dai, N. Hajaj, P.J. Liu, X. Liu, M. Sun, P. Sundberg, H. Yee, K. Zhang, G.E. Duggan, G. Flores, M. Hardt, J. Irvine, Q. Le, K. Litsch, J. Marcus, A. Mossin, J. Dean, Scalable and accurate deep learning for electronic health records, arXiv print:1801.07860 (2018) [Google Scholar]
- E. Choi, T.B. Mohammad, A. Schuetz, W.F. Stewart & J. Sun, Doctor AI: Predicting Clinical Events via Recurrent Neural Networks, arXiv print:1511.05942 (2016) [Google Scholar]
- A.E.W. Johnson, T.J. Pollard, L. Shen, L.W.H. Lehman, M. Feng, M. Ghassemi, B. Moody, P. Szolovits, L.A. Celi & R.G. Mark, MIMIC-III, a freely accessible critical care database. Scientific Data, 3(1), 160035–160035 (2016) [CrossRef] [Google Scholar]
- J. Irvin, P. Rajpurkar, M. Ko, Y. Yu, S. Ciurea-Ilcus, C. Chute, H. Marklund, B. Haghgoo, R. Ball, K. Shpanskaya, J. Seekins, D.A. Mong, S.S. Halabi, J.K. Sandberg, R. Jones, D.B. Larson, C.P. Langlotz, B.N. Patel, M.P. Lungren & A.Y. Ng, CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison. arXiv print:1901.07031 (2019) [Google Scholar]
- Y. LeCun, Y. Bengio & G. Hinton, Deep learning. Nature (London), 521(7553), 436–444 (2015) [CrossRef] [PubMed] [Google Scholar]
- Hasan, Md. K., Alam, Md. A., Das, D., Hossain, E., & Hasan, M., Diabetes Prediction Using Ensembling of Different Machine Learning Classifiers. IEEE Access, 8, 76516– 76531(2020) [CrossRef] [Google Scholar]
- F. Doshi-Velez & K. Been, Towards A Rigorous Science of Interpretable Machine Learning. arXiv print:1702.08608 (2017) [Google Scholar]
- P. Rajpurkar, J. Irvin, R.L. Ball, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, C.P. Langlotz, B.N. Patel, K.W. Yeom, K. Shpanskaya, F.G. Blankenberg, J. Seekins, T.J. Amrhein, D.A. Mong, S.S. Halabi, E.J. Zucker, M.P. Lungren, Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Medicine, 15(11), e1002686–e1002686 (2018) [CrossRef] [Google Scholar]
- Z. Obermeyer & E.J. Emanuel, Predicting the Future — Big Data, Machine Learning, and Clinical Medicine. The New England Journal of Medicine, 375(13), 1216–1219 (2016) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.