Open Access
Issue
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
Article Number 03004
Number of page(s) 6
Section Image Processing and Computer Vision
DOI https://doi.org/10.1051/itmconf/20257003004
Published online 23 January 2025
  1. P. Obrador, L. Schmidt-Hackenberg, N. Oliver, The role of image composition in image aesthetics, in Proceedings of the 2010 IEEE International Conference on Image Processing, (2010). [Google Scholar]
  2. H. Jang, Y. Lee, J.-S. Lee, Modeling, Quantifying, and Predicting Subjectivity of Image Aesthetics. arXiv preprint arXiv:2208.09666 (2022). [Google Scholar]
  3. C.-H. Su, H.-S. Chiu, J.-H. Hung, et al. Color space comparison between RGB and HSV based images retrieval. Adv. Mat. Res. 989, 4123-4126 (2014). [Google Scholar]
  4. A. Krizhevsky, I. Sutskever, G.-E. Hinton, ImageNet classification with deep convolutional neural networks. Commun. ACM. 60, 84-90 (2017). [CrossRef] [Google Scholar]
  5. S. Kanwal, M. Uzair H, A Survey of Hand Crafted and Deep Learning Methods for Image Aesthetic Assessment. arXiv preprint arXiv:2103.11616 (2021). [Google Scholar]
  6. Y. Dai. Exploring CNN-based models for image’s aesthetic score prediction with using ensemble. arXiv preprint arXiv:2210.05119 (2022). [Google Scholar]
  7. J. Zhou, Q. Zhang, et al. Joint regression and learning from pairwise rankings for personalized image aesthetic assessment. Com.Vis.Med. 241–252 (2021). [CrossRef] [Google Scholar]
  8. N. Murray, L. Marchesotti, F. Perronninx, AVA: A large-scale database for aesthetic visual analysis, in Proceedings of the 2012 IEEE conference on computer vision and pattern recognition, (2012). [Google Scholar]
  9. T.-O. Aydın, A. Smolic, M. Gross. Automated aesthetic analysis of photographic images. IEEE Trans. Vis. Comput. Graph. 21, 31-42 (2014). [Google Scholar]
  10. Q. Zhang, S.-C. Zhu. Visual interpretability for deep learning: a survey. Front. Inf. Technol. Electron. Eng. 19, 27-39 (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.