Open Access
Issue
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
Article Number 03005
Number of page(s) 6
Section Image Processing and Computer Vision
DOI https://doi.org/10.1051/itmconf/20257003005
Published online 23 January 2025
  1. Mittal, M., Kumar, K. & Behal, S. Deep learning approaches for detecting DDoS attacks: a systematic review. Soft Comput. 27, 13039-13075 (2023). https://doi.org/10.1007/s00500-021-06608-1 [Google Scholar]
  2. Cui, Y., Qian, Q., Guo, C., Shen, G., Tian, Y., Xing, H., & Yan, L. Towards DDoS detection mechanisms in Software-Defined Networking. J. Netw. Comput. Appl. 190, 103156 (2021). https://doi.org/10.1016/j.jnca.2021.103156 [Google Scholar]
  3. Shieh, C.-S., Lin, W.-W., Nguyen, T.-T., Chen, C.-H., Horng, M.-F., & Miu, D. Detection of Unknown DDoS Attacks with Deep Learning and Gaussian Mixture Model. Appl. Sci. 11, 5213 (2021). https://doi.org/10.3390/app11115213 [Google Scholar]
  4. Alghazzawi, D., Bamasag, O., Ullah, H., & Asghar, M.Z. Efficient Detection of DDoS Attacks Using a Hybrid Deep Learning Model with Improved Feature Selection. Appl. Sci. 11, 11634 (2021). https://doi.org/10.3390/app112411634 [Google Scholar]
  5. Akgun, D., Hizal, S., & Cavusoglu, U. A new DDoS attacks intrusion detection model based on deep learning for cybersecurity. Comput. Secur. 118: 102748 (2022). https://doi.org/10.1016/j.cose.2022.102748 [Google Scholar]
  6. Abdallah, M., An Le Khac, N., Jahromi, H., & Delia Jurcut, A. A hybrid CNN-LSTM based approach for anomaly detection systems in SDNs. In Proceedings of the 16th International Conference on Availability, Reliability and Security, Vienna, Austria, August 2021 (pp. 1-7). https://doi.org/10.1145/3465481.3469190 [Google Scholar]
  7. Mousa, A.K., & Abdullah, M.N. An Improved Deep Learning Model for DDoS Detection Based on Hybrid Stacked Autoencoder and Checkpoint Network. Future Internet. 15: 278 (2023). https://doi.org/10.3390/fi15080278 [Google Scholar]
  8. Alghazzawi, D., Bamasag, O., Ullah, H., & Asghar, M.Z. Efficient Detection of DDoS Attacks Using a Hybrid Deep Learning Model with Improved Feature Selection. Appl. Sci. 11: 11634 (2021). https://doi.org/10.3390/app112411634 [Google Scholar]
  9. Sumathi, S., Rajesh, R., & Lim, S. Recurrent and deep learning neural network models for DDoS attack detection. J. Sens. 2022(1): 8530312 (2022). https://doi.org/10.1155/2022/8530312 [Google Scholar]
  10. Staudemeyer, R.C., & Morris, E.R. Understanding LSTM—a tutorial into long shortterm memory recurrent neural networks. arXiv preprint arXiv:1909.09586 (2019). https://doi.org/10.48550/arXiv.1909.09586 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.