Open Access
Issue
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
Article Number 03006
Number of page(s) 7
Section Image Processing and Computer Vision
DOI https://doi.org/10.1051/itmconf/20257003006
Published online 23 January 2025
  1. Y. Sun, J. Ortiz, Rapid review of generative AI in smart medical applications. Int. J. Comput. Sci. Inf. Technol. 3, 80-93 (2024). [Google Scholar]
  2. J. Mao, M. Niu, C. Jiang, H. Liang, J. Chen, X. Liang, Y. Li, C. Ye, W. Zhang, Z. Li, J. Yu, C. Xu, H. Xu, One million scenes for autonomous driving: ONCE dataset. Proc. Neural Inf. Process. Syst. Conf. (2021). [Google Scholar]
  3. H. Alqahtani, M. Kavakli-Thorne, G. Kumar, Applications of generative adversarial networks (GANs): an updated review. Arch. Comput. Methods Eng. 28, 525-552 (2019). [Google Scholar]
  4. D. Saxena, J. Cao, Generative adversarial networks (GANs) challenges, solutions, and future directions. ACM Comput. Surv. (CSUR) 54, 1-42 (2021). [Google Scholar]
  5. L. Mi, M. Shen, J. Zhang, A probe towards understanding GAN and VAE models, arXiv preprint arXiv:1812.05676 (2018). [Google Scholar]
  6. D. Shen, Z. Xu, X. Zhang, Z. Xu, Regularizing variational autoencoder with diversity and uncertainty awareness. arXiv preprint arXiv:2110.12381 (2021). [Google Scholar]
  7. I. Higgins, L. Matthey, A. Pal, C. P. Burgess, X. Glorot, M. Botvinick, S. Mohamed, A. Lerchner, beta-VAE: Learning basic visual concepts with a constrained variational framework. ICLR (Poster) 3 (2017). [Google Scholar]
  8. C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins, A. Lerchner, Understanding disentangling in β-VAE. arXiv preprint arXiv:1804.03599 (2018). [Google Scholar]
  9. Z. Liu, P. Luo, X. Wang, X. Tang, Deep learning face attributes in the wild. Proc. IEEE Int. Conf. Comput. Vis. (ICCV) (2015). [Google Scholar]
  10. L. Sun, Z. Fan, X. Fu, Y. Huang, X. Ding, J. Paisley, A deep information sharing network for multi-contrast compressed sensing MRI reconstruction. IEEE Trans. Image Process. 28, 6141-6153 (2019). [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Borji, Pros and cons of GAN evaluation measures. Comput. Vis. Image Underst .179, 41-65 (2019). [CrossRef] [Google Scholar]
  12. M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, S. Hochreiter, GANs trained by a two time-scale update rule converge to a local Nash equilibrium. arXiv (Cornell Univ.) 30, 6626-6637 (2017). [Google Scholar]
  13. K. Sohn, X. Yan, H. Lee, Learning structured output representation using deep conditional generative models. Adv. Neural Inf. Process. Syst. 28, 3483-3491 (2015). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.