Open Access
Issue
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
Article Number 03007
Number of page(s) 9
Section Image Processing and Computer Vision
DOI https://doi.org/10.1051/itmconf/20257003007
Published online 23 January 2025
  1. A. Jain, R. Bolle & S. Pankanti, Introduction to biometrics, Springer US, 1–41 (1996) [Google Scholar]
  2. M. Hassaballah & S. Aly, Face recognition: challenges, achievements and future directions. IET Computer Vision, 9(4), 614–626 (2015) [CrossRef] [Google Scholar]
  3. L. Masupha, T. Zuva, S. Ngwira & O. Esan, Face recognition techniques, their advantages, disadvantages and performance evaluation. International Conference on Computing, Communication and Security, 1–5 (2015) [Google Scholar]
  4. S. Singh & S.V.A.V. Prasad, Techniques and challenges of face recognition: A critical review. Procedia computer science, 143, 536-543 (2018) [CrossRef] [Google Scholar]
  5. W. Ali, W. Tian, S.U. Din, D. Iradukunda & A.A. Khan, Classical and modern face recognition approaches: a complete review. Multimedia tools and applications, 80, 4825-4880 (2021) [Google Scholar]
  6. Y. Kortli, M. Jridi, A. Al Falou & M. Atri, Face recognition systems: A survey. Sensors, 20 (2), 342 (2020) [CrossRef] [PubMed] [Google Scholar]
  7. M.P. Beham & S.M.M. Roomi, A review of face recognition methods. International Journal of Pattern Recognition and Artificial Intelligence, 27 (04), 1356005 (2013) [CrossRef] [Google Scholar]
  8. Y. Guo, L. Zhang, Y. Hu, X. He & J. Gao, Ms-celeb-1m: A dataset and benchmark for large-scale face recognition. In Computer Vision-ECCV Proceedings, 87–102 (2016) [Google Scholar]
  9. Z. Wang, G. Wang, B. Huang, Z. Xiong, Q. Hong, H. Wu & Y. Pei, Masked face recognition dataset and application. arxiv preprint:2003.09093 (2003) [Google Scholar]
  10. R. Gross & V. Brajovic, An image preprocessing algorithm for illumination invariant face recognition. In International conference on audio-and video-based biometric person authentication, 10–18 (2003) [Google Scholar]
  11. T. Heseltine, N. Pears & J. Austin, Evaluation of image preprocessing techniques for eigenface-based face recognition. In Second International Conference on Image and Graphics, 4875, 677-685 (2002) [CrossRef] [Google Scholar]
  12. R. Huang, V. Pavlovic & D.N. Metaxas, A hybrid face recognition method using markov random fields. In Proceedings of International Conference on Pattern Recognition, 3, 157-160 (2004) [CrossRef] [Google Scholar]
  13. A. Mian, M. Bennamoun & R. Owens, An efficient multimodal 2D-3D hybrid approach to automatic face recognition. IEEE transactions on pattern analysis and machine intelligence, 29(11), 1927–1943 (2007) [CrossRef] [Google Scholar]
  14. K.S. Arun, T.S. Huang & S.D. Blostein, Least-squares fitting of two 3-D point sets. IEEE Transactions on pattern analysis and machine intelligence, (5), 698–700 (1987) [CrossRef] [Google Scholar]
  15. J. Schmidhuber, Deep learning in neural networks: An overview. Neural networks, 61, 85-117 (2015) [CrossRef] [Google Scholar]
  16. L. Deng, A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA transactions on Signal and Information Processing, 3, e2 (2014) [Google Scholar]
  17. Y. Taigman, M. Yang, M.A. Ranzato & L. Wolf, Deepface: Closing the gap to humanlevel performance in face verification. In Proceedings of the IEEE conference on computer vision and pattern recognition, 1701–1708 (2014) [Google Scholar]
  18. H. Benradi, A. Chater & A. Lasfar, A hybrid approach for face recognition using a convolutional neural network combined with feature extraction techniques. IAES International Journal of Artificial Intelligence, 12, 627-640 (2023) [Google Scholar]
  19. K.S. Yoon, Y.K. Ham & R.H. Park, Hybrid approaches to frontal view face recognition using the hidden Markov model and neural network. Pattern Recognition, 31(3), 283–293 (1998) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.