Open Access
Issue
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
Article Number 03009
Number of page(s) 6
Section Image Processing and Computer Vision
DOI https://doi.org/10.1051/itmconf/20257003009
Published online 23 January 2025
  1. A.S. Tolba, A.H. El-Baz & A.A. El-Harby, Face recognition: A literature review. International Journal of Signal Processing, 2(2), 88–103 (2006) [Google Scholar]
  2. M. Turk & A. Pentland, Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1), 71–86 (1991) [CrossRef] [Google Scholar]
  3. A. Krizhevsky, I. Sutskever & G.E. Hinton, Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25 (2012) [Google Scholar]
  4. F. Schroff, D. Kalenichenko & J. Philbin, Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern recognition, 815–823 (2015) [Google Scholar]
  5. W. Zhao, R. Chellappa, P.J. Phillips & A. Rosenfeld, Face recognition: A literature survey. ACM computing surveys, 35(4), 399–458 (2003) [CrossRef] [Google Scholar]
  6. K. Zhang, Z. Zhang, Z. Li & Y. Qiao, Joint face detection and alignment using multitask cascaded convolutional networks. IEEE signal processing letters, 23(10), 1499–1503 (2016) [CrossRef] [Google Scholar]
  7. W. Liu, Y. Wen, Z. Yu & M. Yang, Large-margin softmax loss for convolutional neural networks. arXiv preprint:1612.02295 (2016) [Google Scholar]
  8. S. Ren, K. He, R. Girshick & J. Sun, Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 28 (2015) [Google Scholar]
  9. W. Liu, Y. Wen, Z. Yu & M. Yang, Large-margin softmax loss for convolutional neural networks. arXiv preprint:1612.02295 (2016) [Google Scholar]
  10. Y. Sun, X. Wang & X. Tang, Deep convolutional network cascade for facial point detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, 3476–3483 (2013) [Google Scholar]
  11. G.B. Huang, M. Mattar, T. Berg & E. Learned-Miller, Labeled faces in the wild: A database forstudying face recognition in unconstrained environments. In Workshop on faces in’Real-Life’Images: detection, alignment, and recognition (2008) [Google Scholar]
  12. B. Amos, B. Ludwiczuk & M. Satyanarayanan, Openface: A general-purpose face recognition library with mobile applications. CMU School of Computer Science, 6 (2), 20 (2016) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.