Open Access
Issue
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
Article Number 03013
Number of page(s) 6
Section Image Processing and Computer Vision
DOI https://doi.org/10.1051/itmconf/20257003013
Published online 23 January 2025
  1. W. Rawat & Z. Wang, Deep convolutional neural networks for image classification: A comprehensive review. Neural computation, 29(9), 2352–2449 (2017) [CrossRef] [PubMed] [Google Scholar]
  2. L. Chen, S. Li, Q. Bai, J. Yang, S. Jiang & Y. Miao, Review of image classification algorithms based on convolutional neural networks. Remote Sensing, 13 (22), 4712 (2021) [CrossRef] [Google Scholar]
  3. A.A.M. Al-Saffar, H. Tao & M.A. Talab, Review of deep convolution neural network in image classification. In 2017 International conference on radar, antenna, microwave, electronics, and telecommunications, 26–31 (2017) [CrossRef] [Google Scholar]
  4. E. Miranda, M. Aryuni & E. Irwansyah, A survey of medical image classification techniques. International conference on information management and technology, 5661 (2016) [Google Scholar]
  5. M. Li, S. Zang, B. Zhang, S. Li & C. Wu, A review of remote sensing image classification techniques: The role of spatio-contextual information. European Journal of Remote Sensing, 47(1), 389–411 (2014) [CrossRef] [Google Scholar]
  6. J. Song, S. Gao, Y. Zhu & C. Ma, A survey of remote sensing image classification based on CNNs. Big earth data, 3(3), 232–254 (2019) [CrossRef] [Google Scholar]
  7. A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset & V. Ferrari, The open images dataset v4: Unified image classification, object detection, and visual relationship detection at scale. International journal of computer vision, 128 (7), 19561981 (2020) [CrossRef] [Google Scholar]
  8. N. Sharma, V. Jain & A. Mishra, An analysis of convolutional neural networks for image classification. Procedia computer science, 132, 377-384 (2018) [CrossRef] [Google Scholar]
  9. E. Pasolli, F. Melgani, D. Tuia, F. Pacifici & W.J. Emery, SVM active learning approach for image classification using spatial information. IEEE Transactions on Geoscience and Remote Sensing, 52(4), 2217–2233 (2013) [Google Scholar]
  10. H. Wu, Q. Liu & X. Liu, A review on deep learning approaches to image classification and object segmentation. Computers, Materials & Continua, 60(2) (2019) [Google Scholar]
  11. P. Wang, E. Fan & P. Wang, Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern recognition letters, 141, 61-67 (2021) [CrossRef] [Google Scholar]
  12. Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu & T. Huang, Large-scale image classification: Fast feature extraction and SVM training. In CVPR, 1689–1696 (2011) [Google Scholar]
  13. A. Kaul & S. Raina, Support vector machine versus convolutional neural network for hyperspectral image classification: A systematic review. Concurrency and Computation: Practice and Experience, 34(15), e6945 (2022) [CrossRef] [Google Scholar]
  14. D.M. Abdullah & A.M. Abdulazeez, Machine learning applications based on SVM classification a review. Qubahan Academic Journal, 1(2), 81–90 (2021) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.