Open Access
Issue
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
Article Number 03020
Number of page(s) 15
Section Image Processing and Computer Vision
DOI https://doi.org/10.1051/itmconf/20257003020
Published online 23 January 2025
  1. Y. Jiang, Application and Comparison of Multiple Machine Learning Models in Finance, Sci. Program. 2022, 9613554 (2022). https://doi.org/10.1155/2022/9613554 [Google Scholar]
  2. K. Kandhway, Dynamic Outcome Prediction of an NBA Match, 2024 18th International Conference on Ubiquitous Information Management and Communication (IMCOM), Kuala Lumpur, Malaysia, 2024, pp. 1-4. DOI: 10.1109/IMCOM60618.2024.10418437 [Google Scholar]
  3. L. P. Teklenburg, AI-based Classification of American Football Plays Combining Computer Vision and Historical Play-by-play Data, Diss. Technische Hochschule Ingolstadt, 2024. http://nbn-resolving.de/urn:nbn:de:bvb:573-47451 [Google Scholar]
  4. R. Stefani, Football and Basketball Predictions Using Least Squares, IEEE Trans. Syst. Man Cybern. 7, 117-121 (1977). [CrossRef] [Google Scholar]
  5. S. Yip, Y. Zou, R. T. H. Hung, K. F. C. Yiu, Forecasting Number of Corner Kicks Taken in Association Football Using Compound Poisson Distribution, J. Oper. Res. Soc. 1-11 (2024). https://doi.org/10.1080/01605682.2024.2306170 [Google Scholar]
  6. D. Mwembe, L. Sibanda, N. C. Mupondo, Application of a Bivariate Pois-son Model in Devising a Profitable Betting Strategy of the Zimbabwe Premier Soccer League Match Results, Am. J. Theor. Appl. Stat. 4, 99-111 (2015). https://d1wqtxts1xzle7.cloudfront.net/66519749/10.11648.j.ajtas.20150403.15-libre.pdf [CrossRef] [Google Scholar]
  7. R. Baboota, H. Kaur, Predictive Analysis and Modelling Football Results Using Machine Learning Approach for English Premier League, Int. J. Forecast. 35 (2018). https://doi.org/10.1016/j.ijforecast.2018.01.003 [Google Scholar]
  8. A. Joseph, N. Fenton, M. Neil, Predicting Football Results Using Bayesian Nets and Other Machine Learning Techniques, Knowl-Based Syst. 19, 544-553 (2006). https://doi.org/10.1016/j.knosys.2006.04.011 [CrossRef] [Google Scholar]
  9. L. M. Hvattum, H. Arntzen, Using ELO Ratings for Match Result Prediction in Association Football, Int. J. Forecast. 26, 460-470 (2010). https://doi.org/10.48550/arXiv.2109.15046 [CrossRef] [Google Scholar]
  10. L. Breiman, Random Forests, Mach. Learn. 45, 5-32 (2001). https://doi.org/10.1023/A:1010933404324 [NASA ADS] [CrossRef] [Google Scholar]
  11. J. Cai, J. Luo, S. Wang, S. Yang, Feature Selection in Machine Learning: A New Perspective, Neurocomputing 300, 70-79 (2018). https://doi.org/10.1016/j.neucom.2017.11.077 [CrossRef] [Google Scholar]
  12. J. Platt, Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines, Advances in Kernel Methods-Support Vector Learning. (1998) 208. https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/ [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.