Open Access
Issue
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
Article Number 03019
Number of page(s) 12
Section Image Processing and Computer Vision
DOI https://doi.org/10.1051/itmconf/20257003019
Published online 23 January 2025
  1. Wang, D. Xue, H. Wu, M. Wang. Handwritten digit recognition based on conditional generative adversarial networks. Liquid Crystal and Display, 12, 1284-1290 (2020). [Google Scholar]
  2. K. Cheng, R. Tahir, L. K. Eric, M. Li. An analysis of generative adversarial networks and variants for image synthesis on MNIST dataset. Multimedia Tools and Applications, 1 (2020). [Google Scholar]
  3. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, et al. Generative adversarial nets. MIT Press (2014). [Google Scholar]
  4. X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, P. Abbeel. InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets. (2016). [Google Scholar]
  5. A. Odena. Semi-supervised learning with generative adversarial networks. arXiv (2016). [Google Scholar]
  6. M. Song, Q. Su, M. Zhang. Handwriting digit generation based on GAN model. In 2021 3rd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), 144-148 (2021). [Google Scholar]
  7. T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen. Improved techniques for training GANs. (2016). [Google Scholar]
  8. M. Mirza, S. Osindero. Conditional generative adversarial nets. Computer Science, 2672-2680 (2014). [Google Scholar]
  9. Z. Qin, Y. Shan. Generation of handwritten numbers using generative adversarial networks. Journal of Physics: Conference Series, 1827(1), 012070 (10pp) (2021). [CrossRef] [Google Scholar]
  10. Y. Tiwari, A. Rasool, G. Hajela. Machine learning with generative adversarial network. In 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA) (2020). [Google Scholar]
  11. Yann LeCun, Corinna Cortes, Chris Burges. The MNIST database of handwritten digits. 2024-08-15. https://yann.lecun.com/exdb/mnist/. [Google Scholar]
  12. Z. Ding. A comparative analysis of handwritten digit generation models based on generative adversarial networks. Modern Industrial Economics and Information Technology, 04, 263-265 (2023). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.