Open Access
Issue |
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
|
|
---|---|---|
Article Number | 04021 | |
Number of page(s) | 8 | |
Section | AI and Advanced Applications | |
DOI | https://doi.org/10.1051/itmconf/20257004021 | |
Published online | 23 January 2025 |
- A. Lohrasebi, T. Koslowski, Modeling water purification by an aquaporin-inspired graphene-based nano-channel. J. Mol. Model. 25, 280 (2019). [CrossRef] [Google Scholar]
- J. Rahman, et al., Recent advancements and challenges of NLP-based sentiment analysis: A state-of-the-art review. Nat. Lang. Process. J. (2024): 100059. [Google Scholar]
- A. Dubey, et al., The Llama 3 herd of models. arXiv preprint arXiv:2407.21783 (2024). [Google Scholar]
- S. Loria, TextBlob documentation. Release 0.15, 2 (8), 269 (2018). [Google Scholar]
- W. Fan, F. Geerts, X. Jia, Improving data quality: Consistency and accuracy. ACM (2007). [Google Scholar]
- T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, D. Amodei, Language models are one-shot learners. In Proc. 34th Int. Conf. Neural Inf. Process. Syst. (NIPS ‘20), Curran Associates Inc., Red Hook, NY, USA, Art. 159, 1877-1901 (2020). [Google Scholar]
- T. Kojima, S. Gu, M. Reid, Y. Matsuo, Y. Iwasawa, Large language models are zeroshot reasoners. arXiv abs/2205.11916 (2022). [Google Scholar]
- J. E. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, W. Chen, LoRA: Low- Rank Adaptation of Large Language Models. arXiv abs/2106.09685 (2021). [Google Scholar]
- Y.-Y. Song, L. Ying, Decision tree methods: Applications for classification and prediction. Shanghai Arch. Psychiatry 27 (2), 130 (2015). [Google Scholar]
- H. R. Prince, A. A. Mamun, I. H. Peyal, et al., CSXAI: A lightweight 2D CNN-SVM model for detection and classification of various crop diseases with explainable AI visualization. Front. Plant Sci. (2024), 151412988-1412988. [Google Scholar]
- Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, Q. V. Le, XLNet: Generalized autoregressive pretraining for language understanding. In Adv. Neural Inf. Process. Syst., pp. 5753-5763 (2019). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.