Open Access
Issue
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
Article Number 04022
Number of page(s) 7
Section AI and Advanced Applications
DOI https://doi.org/10.1051/itmconf/20257004022
Published online 23 January 2025
  1. L. Yaolin, J. Zou, W. Yang, C.-Q. Li, A review of recent advances in research on PM2.5 in China. Int. J. Environ. Res. Public Health 15, 438 (2018) [CrossRef] [Google Scholar]
  2. B. Liu, W. Chen, Z. Wang, S. Pouriyeh, M. Han, RAdam-DA-NLSTM: A Nested LSTM-Based Time Series Prediction Method for Human-Computer Intelligent Systems. Electronics 12, 3084 (2023) [CrossRef] [Google Scholar]
  3. L. Yang, Z. Miao, T. Li, S. Tan, B. Wang, D. Li, Y. Liu, et al., LSTM-GCN based multidimensional parameter relationship analysis and prediction framework for system level experimental bench. Ann. Nucl. Energy 210, 110890 (2025) [CrossRef] [Google Scholar]
  4. Air Pollution Forecasting - LSTM Multivariate, Kaggle, (2021) https://www.kaggle.com/datasets/rupakroy/lstm-datasets-multivariate-univariate [Google Scholar]
  5. S. Patro, Normalization: A preprocessing stage. arXiv preprint arXiv:1503.06462 (2015) [Google Scholar]
  6. C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, et al., Array programming with NumPy. Nature 585, 357-362 (2020) [NASA ADS] [CrossRef] [Google Scholar]
  7. X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, W.-C. Woo, Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 28 (2015) [Google Scholar]
  8. R. C. Staudemeyer, E. R. Morris, Understanding LSTM--a tutorial into long short-term memory recurrent neural networks. arXiv preprint arXiv:1909.09586 (2019) [Google Scholar]
  9. J. Brownlee, A gentle introduction to early stopping to avoid overtraining neural networks. Machine Learning Mastery 7 (2018) [Google Scholar]
  10. J. Brownlee, How to tune LSTM hyperparameters with Keras for time series forecasting. (2017) [Google Scholar]
  11. T. O. Hodson, Root mean square error (RMSE) or mean absolute error (MAE): When to use them or not. Geosci. Model Dev. Discuss. 2022, 1-10 (2022) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.