Open Access
Issue |
ITM Web Conf.
Volume 71, 2025
International Conference on Mathematics, its Applications and Mathematics Education (ICMAME 2024)
|
|
---|---|---|
Article Number | 01011 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/itmconf/20257101011 | |
Published online | 06 February 2025 |
- T. Goetz et al, A stochastic model and associated Fokker-Planck equation for the fiber lay-down process in nonwoven production processes. SIAM J. Appl. Math. 67, 17041717 (2007) https://doi.org/10.1137/06067715X [Google Scholar]
- M. Grothaus et al, Application of a three-dimensional fiber lay-down model to nonwoven production processes. J. of Math. Industry. 4, 1–19 (2014) https://doi.org/10.1186/2190-5983-4-4 [CrossRef] [MathSciNet] [Google Scholar]
- M. Herty et al, A smooth model for fiber lay-down processes and its diffusion approximations. Kinet. Relat. Models. 2, 489–502 (2009) https://doi.org/10.3934/krm.2009.2.489 [CrossRef] [MathSciNet] [Google Scholar]
- A. Klar, J. Maringer, R. Wegener, A 3D model for fiber lay-down nonwoven production processes. Math. Models and Methods in Appl. Sci. 22, 1–18 (2012) https://doi.org/10.1142/S0218202512500200 [CrossRef] [Google Scholar]
- W. Bock et al, Parameter estimation from occupation times—a white noise approach. Comm. Stoch. Anal. 26, 29–40 (2014) https://doi.org/10.31390/cosa.8.4.04 [Google Scholar]
- H.P. Suryawan, A white noise aproach to occupation times of Brownian motion. Int. J. Appl. Sci. Smart Tech. 4, 131–140 (2022) https://doi.org/10.24071/ijasst.v4i2.5322 [CrossRef] [Google Scholar]
- H.P. Suryawan, Expected value of the occupation times of Brownian motion. Int. J. Appl. Sci. Smart Tech. 6, 53–62 (2024) https://doi.org/10.24071/ijasst.v6i1.7376 [Google Scholar]
- T. Hida et al, White noise. an infinite dimensional calculus (Kluwer Academic Publisher, Dordrecht, 1993) https://doi.org/10.1007/978-94-017-3680-0 [Google Scholar]
- Z.Y. Huang and J. Yan, Introduction to Infinite Dimensional Stochastic Analysis (Kluwer Academic Publisher, Dordrecht, 2000) https://doi.org/10.1007/978-94-011-4108-6 [Google Scholar]
- H.H. Kuo, White noise distribution theory (CRC Press, Boca Raton, 1996) https://doi.org/10.1201/9780203733813 [Google Scholar]
- Y. Kondratiev et al, Generalized functionals in Gaussian spaces: the characterization theorem revisited. J. of Funct. Anal. 141, 301–318 (1996) https://doi.org/10.1006/jfan.1996.0130 [CrossRef] [MathSciNet] [Google Scholar]
- C. Bender, An Ito formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter. Stoch. Proc.Appl. 104, 81–106 (2003) https://doi.org/10.1016/S0304-4149(02)00212-0 [CrossRef] [Google Scholar]
- C. Drumond, M. J. Oliveira, J. L. da Silva, Intersection of fractional Brownian motions with 𝐻 ∈ (0,1) as generalized white noise functionals, in Proceedings of the 5th Jagna International Workshop, Jagna, Bohol, Philippines, January 3-5 (2008) https://doi.org/10.1063/1.2956798 [Google Scholar]
- W. Bock, J. L. da Silva, H. P. Suryawan, Local times for multifractional Brownian motion in higher dimensions: A white noise approach. Inf. Dim. Anal. Quantum Prob. 19, art. id. 1650026, 16 pp (2016) https://doi.org/10.1142/S0219025716500260 [Google Scholar]
- W. Bock, J. L. da Silva, H. P. Suryawan, Self-intersection local times for multifractional Brownian motion in higher dimensions: A white noise approach. Inf. Dim. Anal. Quantum Prob. 23, art. id. 2050007, 18 pp (2020) https://doi.org/10.1142/S0219025720500071 [Google Scholar]
- M. Grothaus, F. Riemann, H. P. Suryawan, A White Noise approach to the Feynman integrand for electrons in random media. J. Math. Phys. 55, id. 013507, 16 pp (2014) https://doi.org/10.1063/1.4862744 [CrossRef] [Google Scholar]
- M. Grothaus, H. P. Suryawan, J. L. da Silva, A white noise approach to stochastic currents of Brownian motion. Inf. Dim. Anal. Quantum Prob 26, art. id. 2250025, 10 pp (2023) https://doi.org/10.1142/S0219025722500254 [Google Scholar]
- H.P. Suryawan, A white noise approach to the self intersection local times of a Gaussian process. J. Indones. Math. Soc. 20, 111–124 (2014) https://doi.org/10.22342/jims.20.2.136.111-124. [CrossRef] [MathSciNet] [Google Scholar]
- H.P. Suryawan, Weighted local times of a sub-fractional Brownian motion as Hida distributions. Jurnal Matematika Integratif 15, 81–87 (2019) https://doi.org/10.24198/jmi.v15.n2.23350.81 [CrossRef] [Google Scholar]
- H.P. Suryawan, Pendekatan analisis derau putih untuk arus stokastik dari gerak Brown subfraksional. Limits: Journal of Mathematics and Its Applications 19, 15–25 (2022) http://dx.doi.org/10.12962/limits.v19i1.8974 [CrossRef] [Google Scholar]
- H.P. Suryawan, Derivative of the Donsker delta functionals. Math. Bohem. 144, 161176 (2019) http://dx.doi.org/10.21136/MB.2018.0078-17 [CrossRef] [MathSciNet] [Google Scholar]
- H.P. Suryawan, Donsker’s delta functional of stochastic processes with memory. J. Math. Fund. Sci. 51, 265–277 (2019) http://dx.doi.org/10.5614/j.math.fund.sci.2019.51.3.5 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.