Open Access
Issue |
ITM Web Conf.
Volume 71, 2025
International Conference on Mathematics, its Applications and Mathematics Education (ICMAME 2024)
|
|
---|---|---|
Article Number | 01012 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/itmconf/20257101012 | |
Published online | 06 February 2025 |
- G. E. Andrews, The Theory of Partitions, (Addison-Wesley, 1976) [Google Scholar]
- A. Alhazov, K. Morita, and C. Iwamoto, A Note on Tatami Tilings, Mathematical Foundation of Algorithms and Computer Science (T. Tokuyama, Ed.), RIMS Kokyuroku series, No. 1691, Research Institute for Mathematical Sciences, Kyoto, Japan, (2010), pp.1–7., http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/kokyuroku.html [Google Scholar]
- O. Bodini, M. Latapy, Generalized Tilings with Height Functions. Morfismos. 7, 47 (2003). [Google Scholar]
- A. Erickson, Tatami Maker---A combinatorially rich mechanical game board, in Proceedings of Bridges 2013: Mathematics, Music, Art, Architecture, Culture (G. W. Hart, and R. E. Sarhangi), pp.63–70, arXiv:1310.5969v2 [math.CO] 18 Mar 2013. [Google Scholar]
- A. Erickson, F. Ruskey, M. Schurch, and J. Woodcock, Auspicious tatami mat arrangements, arXiv:1103.3309 [math.CO] 16 Mar 2011. [Google Scholar]
- A. Erickson, M. Schurch, (2011). Enumerating Tatami Mat Arrangements of Square Grids. In: Iliopoulos, C.S., Smyth, W.F. (eds) Combinatorial Algorithms. IWOCA 2011. Lecture Notes in Computer Science, vol 7056. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25011-8_18 [Google Scholar]
- F. Faase, On the number of specific spanning subgraphs of the graphs G X Pn. Ars Combin. 49, 129 (1998). [MathSciNet] [Google Scholar]
- R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete mathematics: a foundation for computer science, (Addison-Wesley, …, 1994) [Google Scholar]
- J. L. Hock, and R. B. McQuistan, (1984). “A note on the occupational degeneracy for dimers on a saturated two-dimensional lattice space”. Discrete Appl. Math. 8: 101–104. doi:10.1016/0166-218X(84)90083-0. MR0739603. [CrossRef] [MathSciNet] [Google Scholar]
- P. W. Kasteleyn, (1961), “The statistics of dimers on a lattice. I. The number of dimer arrangements on a quadratic lattice”, Physica 27 (12): 1209–1225, Bibcode: 1961Phy 27.1209K, doi:10.1016/0031-8914(61)90063-5. [CrossRef] [Google Scholar]
- R. Kenyon, (2000), “The planar dimer model with boundary: a survey”, in Baake, Michael; Moody, Robert V., Directions in mathematical quasicrystals, CRM Monograph Series, 13, Providence, RI: American Mathematical Society, pp. 307–328, ISBN 0-8218 2629-8, MR1798998, Zbl 1026.82007 [Google Scholar]
- R. Kenyon, An introduction to the dimer model, arXiv preprint math/0310326, 20 Oct 2003 [Google Scholar]
- R. Kenyon, and A. Okounkov, (2005), “What is … a dimer?”, Notices of the American Mathematical Society 52 (3): 342–343, ISSN 0002-9920. [MathSciNet] [Google Scholar]
- K. S. Kimura, and M. Higuchi, Carlo estimation of the number of tatami tilings. Int. J. Mod. Physi. C. 27, 1650128 (2016). [CrossRef] [Google Scholar]
- D. Klarner, and J. Pollack, Domino tilings of rectangles with fixed width. Discrete Mathematics. 32, 45 (1980). https://doi.org/10.1016/0012-365X(80)90098-9 [CrossRef] [MathSciNet] [Google Scholar]
- R. J. Mathar, (2013), “Paving rectangular regions with rectangular tiles: tatami and non-tatami tilings”. arXiv:1311.6135. [Google Scholar]
- G. Polya, R. E. Tarjan, D. R. Woods, Notes on Introductory Combinatorics, Birkhauser Boston, Inc., 1983. [CrossRef] [Google Scholar]
- J. Propp, “Lambda-determinants and domino-tilings”, Advances in Applied Mathematics 34 (4): 871–879, arXiv:math.CO/0406301, doi:10.1016/j.aam.2004.06.005. [Google Scholar]
- D. C. Read, The dimer problem for narrow rectangular arrays: A unified method of solution, and some extensions. Aequationes Mathematicae. 24, 47 (1982) [CrossRef] [MathSciNet] [Google Scholar]
- F. Ruskey, J. Woodcock, “Counting fixed-height Tatami tilings”, The Electronic Journal of Combinatorics 16(1), 2009, R126, pp.1–20, http://www.combinatorics.org/ [CrossRef] [Google Scholar]
- J. A. Sellers, (2002), “Domino tilings and products of Fibonacci and Pell numbers”, Journal of Integer Sequences 5 (Article 02.1.2). [Google Scholar]
- R. P. Stanley, (1985). “On dimer coverings of rectangles of fixed width”. Discrete Appl. Math 12: 81–87. doi:10.1016/0166-218x(85)90042-3. MR0798013. [CrossRef] [MathSciNet] [Google Scholar]
- W. P. Thurston, (1990), “Conway’s tiling groups”, American Mathematical Monthly (Mathematical Association of America) 97 (8): 757–773, doi:10.2307/2324578, JSTOR 2324578. [CrossRef] [Google Scholar]
- Y. Ueno, Tatami mat laying and Fibonacci numbers---let’s discover the rules of numbers, Proceedings of the 2022 Spring Annual Meeting, pp.108–110, Mathematics Education Society of Japan (in Japanese). [Google Scholar]
- Y. Ueno, The mathematics of counting---How to lay tatami mats and their recurrence formulas, Proceedings of the 2024 Spring Annual Meeting, pp.44–46, Mathematics Education Society of Japan (in Japanese). [Google Scholar]
- Y. Ueno, Series Article: Looking for an elegant solution, Commentary Session, Suugaku Seminar, vol.63, no.12, Nippon Hyoron Sha Co. Ltd. (to appear, in Japanese). [Google Scholar]
- D. Wells, (1997), The Penguin Dictionary of Curious and Interesting Numbers (revised ed.), London: Penguin, p. 182, ISBN 0-14-026149-4. [Google Scholar]
- Lesson Plan---Tatami Mat Measuring 2007, Washington and Lee University, https://my.wlu.edu/document/lesson-plan-paper-tatami [Google Scholar]
- “Pfaffian,” Wikimedia Foundation, last edited on 17 August 2024, at 09:23 (UTC)., https://en.wikipedia.org/wiki/Pfaffian [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.