Open Access
Issue |
ITM Web Conf.
Volume 71, 2025
International Conference on Mathematics, its Applications and Mathematics Education (ICMAME 2024)
|
|
---|---|---|
Article Number | 01013 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/itmconf/20257101013 | |
Published online | 06 February 2025 |
- R.P. Robot, R. Sengkey, Y.D. Rindengan, Aplikasi Manajemen Rawat Inap dan Rawat Jalan di Rumah Sakit. J. Tek. Inform. 13, 4 (2018) [Google Scholar]
- N.R. Panda, A review on logistic regression in medical research. Natl. J. Community Med. 13, 4, 265–270 (2022) [CrossRef] [Google Scholar]
- H.J. Patel, J.R. Saini, A patient care predictive model using logistic regression. Int. J. Adv. Comput. Sci. Appl. 12, 12 (2021) [Google Scholar]
- F.C.D.Q. Mello, L.G.D.V. Bastos, S.L.M. Soares, V.M. Rezende, M.B. Conde, R.E. Chaisson, G.L. Werneck, Predicting smear negative pulmonary tuberculosis with classification trees and logistic regression: A cross-sectional study. BMC Public Health 6, 1–8 (2006) [CrossRef] [Google Scholar]
- G.R. Banu, A Role of decision tree classification data mining technique in diagnosing thyroid disease. Int. J. Comput. Sci. Eng. 4, 11, 64–70 (2016) [Google Scholar]
- C. Ponnuraja, B. Lakshmanan, V. Srinivasan, B.K. Prasanth, Decision tree classification and model evaluation for breast cancer survivability: A data mining approach. Biomed. Pharmacol. J. 10, 1, 281–289 (2017) [CrossRef] [Google Scholar]
- M.M. Janaina, D.R. Hardoon, Tim H., Patient classification as an outlier detection problem: An application of the one-class support vector machine. Neuroimage 58, 3, 793–804 (2011) [Google Scholar]
- S. Huang, N. Cai, P.P. Pacheco, S. Narrandes, Y. Wang, W. Xu, Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genomics Proteomics 15, 1, 41–51 (2018) [Google Scholar]
- A. Ramón, A.M. Torres, J. Milara, J. Cascón, P. Blasco, J. Mateo, eXtreme Gradient Boosting-based method to classify patients with COVID-19. J. Investig. Med. 70, 7, 1472–1480 (2022) [CrossRef] [Google Scholar]
- Z. Zhang, Y. Zhao, A. Canes, D. Steinberg, O. Lyashevska, Predictive analytics with gradient boosting in clinical medicine. Ann. Transl. Med. 7, 7 (2019) [CrossRef] [Google Scholar]
- L. Breiman, Random Forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324 [CrossRef] [Google Scholar]
- D. Srivastava, L. Bhambhu, Data classification using support vector machine. J. Theor. Appl. Inf. Technol. 12, 1, 1–7 (2010) [Google Scholar]
- A. Natekin, A. Knoll, Gradient boosting machines, a tutorial. Front. Neurorobot. 7, 21 (2013) [CrossRef] [Google Scholar]
- S. De Lusignan, N. Sadek, H. Mulnier, A. Tahir, D. Russell-Jones, K. Khunti, Miscoding, misclassification and misdiagnosis of diabetes in primary care. Diabet. Med. 29, 2, 181–189 (2012) [CrossRef] [Google Scholar]
- L. Tampubolon, P. Pujiyanto, Analisis penerapan prinsip keselamatan pasien dalam pemberian obat terhadap terjadinya medication error di Rawat Inap Rumah Sakit X Tahun 2018. J. Adm. Rumah Sakit Indones. 4, 3, 173–183 (2018). https://doi.org/10.7454/arsi.v4i3.2494 [Google Scholar]
- S. Elrifda, Budaya patient safety dan karakteristik kesalahan pelayanan: Implikasi kebijakan di salah satu rumah sakit di Kota Jambi. Kesmas 6, 2, 3 (2011) [Google Scholar]
- Y.T. Herawati, Budaya keselamatan pasien di ruang rawat inap rumah sakit X Kabupaten Jember. J. Ilmu Kesehat. Masy. 11, 1, 52–60 (2015) [Google Scholar]
- N. Poh, S. Bengio, Database, protocols and tools for evaluating score-level fusion algorithms in biometric authentication. Pattern Recognit. 39, 223–233 (2006) [CrossRef] [Google Scholar]
- D.B. Ruta, B. Gabrys, An Overview of Classifier Fusion Methods. Comput. Inf. Syst. 7, 1–10 (2000) [Google Scholar]
- H.J. Oudah, M.H. Hussein, Exploiting social trust via weighted voting strategy for recommendation systems improvement. Karbala Int. J. Mod. Sci. 9 (2023) [CrossRef] [Google Scholar]
- D. Ruta, B. Gabrys, Classifier selection for majority voting. Inf. Fusion 6, 63–81 (2005) [CrossRef] [Google Scholar]
- T.B. Chandra, K. Verma, B.K. Singh, D. Jain, S.S. Netam, Coronavirus disease (COVID-19) detection in chest X-ray images using majority voting-based classifier ensemble. Expert Syst. Appl. 165, 113909 (2021) [CrossRef] [Google Scholar]
- M. Usman, Z. Shafique, S. Ayub, K. Malik, Urdu text classification using majority voting. Int. J. Adv. Comput. Sci. Appl. 7, 265–273 (2016) [Google Scholar]
- D.D. Solomon, S. Khan, S. Garg, G. Gupta, A. Almjally, B.I. Alabduallah, A.M. Abdallah, Hybrid Majority Voting: Prediction and Classification Model for Obesity. Diagnostics 13, 2610 (2023) [CrossRef] [Google Scholar]
- K.M. Aakre, F.S. Apple, N.L. Mills, S.J. Meex, P.O. Collinson, Lower limits for reporting high-sensitivity cardiac troponin assays and impact of analytical performance on patient misclassification. Clin. Chem. 70, 3, 497–505 (2024) [CrossRef] [Google Scholar]
- S.C. Choi, G.L. Clifton, A. Marmarou, E.R. Miller, Misclassification and treatment effect on primary outcome measures in clinical trials of severe neurotrauma. J. Neurotrauma 19, 1, 17–22 (2002) [CrossRef] [Google Scholar]
- D.W. Hosmer, S. Lemeshow, Applied Logistic Regression (John Wiley & Sons, New York, 2000) [CrossRef] [Google Scholar]
- S.H. Adil, M. Ebrahim, K. Raza, S.S.A. Ali, M.A. Hashmani, Liver patient classification using logistic regression. In 2018 4th Int. Conf. Comput. Inf. Sci. (ICCOINS), pp. 1–5 (IEEE, 2018) [Google Scholar]
- D. Liparas, Y. HaCohen-Kerner, A. Moumtzidou, S. Vrochidis, I. Kompatsiaris, News articles classification using random forests and weighted multimodal features. In Multidisciplinary Inf. Retrieval: 7th Inf. Retrieval Facil. Conf., IRFC 2014, Proc., pp. 63–75 (Springer, 2014) [Google Scholar]
- A. Dogan, D. Birant, A weighted majority voting ensemble approach for classification. In 4th Int. Conf. Comput. Sci. Eng. (UBMK), pp. 1–6 (IEEE, 2019) [Google Scholar]
- M.A. Naji, S. El Filali, M. Bouhlal, E.H. Benlahmar, R.A. Abdelouhahid, O. Debauche, Breast cancer prediction and diagnosis through a new approach based on majority voting ensemble classifier. Procedia Comput. Sci. 191, 481–486 (2021) [CrossRef] [Google Scholar]
- R. Pourdarbani, S. Sabzi, M. Hernández-Hernández, J.L. Hernández-Hernández, G. García-Mateos, D. Kalantari, J.M. Molina-Martínez, Comparison of different classifiers and the majority voting rule for the detection of plum fruits in garden conditions. Remote Sens. 11, 2546 (2019) [CrossRef] [Google Scholar]
- B. Gopinath, B.R. Gupt, Majority voting based classification of thyroid carcinoma. Procedia Comput. Sci. 2, 265–271 (2010) [CrossRef] [Google Scholar]
- A.N.M. Alam, R. Reza, A. Abrar, T. Ahmed, S. Ahmed, S. Sharar, A.A. Rasel, Patients’ severity states classification based on electronic health record (EHR) data using multiple machine learning and deep learning approaches. arXiv preprint arXiv:2209.14907 (2022) [Google Scholar]
- N. Susyanto, Semiparametric copula models for biometric score level fusion. PhD Thesis, Univ. Amsterdam (2016) [Google Scholar]
- Sadikin, E. Mujiono, EHR Dataset for Patient Treatment Classification. Mendeley Data V1, doi:10.17632/7kv3rctx7m.1 (2020) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.