Open Access
Issue |
ITM Web Conf.
Volume 71, 2025
International Conference on Mathematics, its Applications and Mathematics Education (ICMAME 2024)
|
|
---|---|---|
Article Number | 01016 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/itmconf/20257101016 | |
Published online | 06 February 2025 |
- R. C. Indonesia, “Bukan harga, ini alasan orang Indonesia belanja di e-commerce,” CNBC Indonesia, 16 Feb. 2023. [Online]. Available: https://www.cnbcindonesia.com/tech/20230216095033-37-414241/bukan-harga-ini-alasan-orang-indonesia-belanja-di-ecommerce [Google Scholar]
- Shopee, “Shopee,” [Online]. Available: https://shopee.co.id/ [Google Scholar]
- SKINTIFIC, “SKINTIFIC,” [Online]. Available: https://skintific.com/id/pages/aboutus [Google Scholar]
- J. Eisenstein, Introduction to Natural Language Processing, MIT Press, 2019. [Google Scholar]
- V. Raina and S. Krishnamurthy, “Natural language processing,” in Building an Effective Data Science Practice, Springer, 2022, pp. 63–73. [CrossRef] [Google Scholar]
- V. Yadav, P. Verma, and V. Katiyar, “Long short-term memory (LSTM) model for sentiment analysis in social data for e-commerce products reviews in Hindi languages,” Int. J. Inf. Technol., vol. 15, no. 2, pp. 759–772, 2023. https://doi.org/10.1007/s41870-022-00867-4 [Google Scholar]
- L. Yang, Y. Li, J. Wang, and R. S. Sherratt, “Sentiment analysis for E-commerce product reviews in Chinese based on sentiment lexicon and deep learning,” IEEE Access, vol. 8, pp. 23522–23530, 2020. https://doi.org/10.1109/ACCESS.2020.2969858 [CrossRef] [Google Scholar]
- U. B. Mahadevaswamy and P. Swathi, “Sentiment analysis using bidirectional LSTM network,” Procedia Comput. Sci., vol. 218, pp. 45–56, 2023. https://doi.org/10.1016/j.procs.2023.02.006 [CrossRef] [Google Scholar]
- V. Balakrishnan, Z. Shi, C. L. Law, R. Lim, L. L. Teh, and Y. Fan, “A deep learning approach in predicting products’ sentiment ratings: a comparative analysis,” J. Supercomput., vol. 78, no. 5, pp. 7206–7226, 2022. https://doi.org/10.1007/s11227-021-03903-4 [CrossRef] [Google Scholar]
- A. Kesely, “How to scrape Shopee user review with bs4,” Stack Overflow, 2020. [Online]. Available: https://stackoverflow.com/questions/62485799/how-to-scrapeshopee-user-review-with-bs4 [Google Scholar]
- M. Işik and H. Dağ, “The impact of text pre-processing on the prediction of review ratings,” Electr. Eng. Comput. Sci., vol. 28, no. 3, pp. 1405–1421, 2020. [Google Scholar]
- S. A. H. Bahtiar, “Perbandingan Naïve Bayes dan Logistic Regression dalam Sentiment Analysis pada Review Marketplace Menggunakan Rating Based Labelling,” Master’s Thesis, Universitas Islam Indonesia, Yogyakarta, 2023. [Google Scholar]
- L. Saputra and L. Marlina, “An analysis of slang word used by Instagram account Plesbol,” E-Journal of English Language and Literature, 2020. [Google Scholar]
- Y. Pratama, L. D. Sianturi, R. D. Manalu, and D. F. Pangaribuan, “Implementation of sentiment analysis on Twitter using Naïve Bayes algorithm to know the people responses to debate of DKI Jakarta governor election,” Physics: Conference Series, vol. 1337, 2019. https://doi.org/10.1088/1742-6596/1337/1/012081 [Google Scholar]
- M. A. Rosid, A. S. Fitrani, I. R. I. Astutik, N. I. Mulloh, and H. A. Gozali, “Improving text pre-processing for student complaint document classification using Sastrawi,” in IOP Conference Series: Materials Science and Engineering, vol. 909, p. 012123, 2020. https://doi.org/10.1088/1757-899X/909/1/012123 [CrossRef] [Google Scholar]
- “RoBERTa: An Efficient Dating Method of Ancient Chinese Texts,” ACM Digital Library, p. 293, 2023. [Google Scholar]
- W. Wongso, “Indonesian RoBERTa-base sentiment classifier,” Hugging Face, 2023. [Online]. Available: https://huggingface.co/w11wo/indonesian-roberta-basesentiment-classifier [Google Scholar]
- P. F. Muhammad, R. Kusumaningrum, and A. Wibowo, “Sentiment analysis using Word2vec and Long Short-Term Memory (LSTM) for Indonesian hotel reviews,” in Procedia Computer Science, vol. 179, pp. 45–55, 2021. https://doi.org/10.1016/j.procs.2021.01.045 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.