Open Access
Issue
ITM Web Conf.
Volume 71, 2025
International Conference on Mathematics, its Applications and Mathematics Education (ICMAME 2024)
Article Number 01017
Number of page(s) 6
DOI https://doi.org/10.1051/itmconf/20257101017
Published online 06 February 2025
  1. M. Chellali, T. W. Haynes, S. T. Hedetniemi, and A. McRae, “[1, 2]-sets in graphs,” Discret. Appl. Math., vol. 161, no. 18, pp. 2885–2893, (2013). https://doi.org/10.1016/j.dam.2013.06.012 [CrossRef] [Google Scholar]
  2. A. K. Goharshady, M. R. Hooshmandasl, and M. Alambardar Meybodi, “[1,2]-sets and [1,2]-total sets in Tress with Algorithms,” Discret. Appl. Math., vol. 198, pp. 136–146 (2016). https://doi.org/10.1016/j.dam.2015.06.014 [CrossRef] [Google Scholar]
  3. X. Yang and B. Wu, “[1,2]-domination in Graphs,” Discret. Appl. Math., vol. 175, pp. 79–86 (2014). https://doi.org/10.1016/j.dam.2014.05.035 [CrossRef] [Google Scholar]
  4. C. Zhao and C. Zhang, “[1,2]-Domination in Generalized Petersen Graphs,” Appl. Math. Sci., vol. 9, pp. 3187–3191 (2015) https://doi.org/10.12988/ams.2015.52163 [Google Scholar]
  5. M. Chellali, T. W. Haynes, S. T. Hedetniemi, and A. Mcrae, “Independent [1 ,k]sets in Graph,” Australas. J. Comb., vol. 59, no. 1, pp. 144–156 (2014) [Online]. Available: https://ajc.maths.uq.edu.au/pdf/59/ajc_v59_p144.pdf [Google Scholar]
  6. S. A. Aleid, J. Cáceres, and M. Luz Puertas, “On independent [1,2]-sets in trees,” Discuss. Math. Graph Theory, vol. 38, no. 3, pp. 645–660 (2018). https://doi.org/10.7151/dmgt.2029 [CrossRef] [MathSciNet] [Google Scholar]
  7. S. A. Aleid, J. Cáceres, and M. L. Puertas, “Every grid has an independent [1, 2]set,” Discret. Appl. Math., vol. 263, pp. 14–21 (2019). https://doi.org/10.1016/j.dam.2018.05.020 [CrossRef] [Google Scholar]
  8. F. Harary, J. P. Hayes, and H.-J. Wu, “A survey of the theory of hypercube graphs,” Comput. Math. with Appl., vol. 15, no. 4, pp. 277–289 (1988). https://doi.org/10.1016/0898-1221(88)90213-1 [CrossRef] [MathSciNet] [Google Scholar]
  9. N. Biggs, “Perfect codes in graphs,” J. Comb. Theory, Ser. B, vol. 15, no. 3, pp. 289–296 (1973). https://doi.org/10.1016/0095-8956(73)90042-7 [CrossRef] [Google Scholar]
  10. M. Livingston and Q. F. Stout, “Perfect Dominating Sets,” Congr. Numer., vol. 79, pp. 187–203, 1990, [Online]. Available: https://www.researchgate.net/publication/2671334 [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.