Open Access
Issue |
ITM Web Conf.
Volume 73, 2025
International Workshop on Advanced Applications of Deep Learning in Image Processing (IWADI 2024)
|
|
---|---|---|
Article Number | 01010 | |
Number of page(s) | 13 | |
Section | Reinforcement Learning and Optimization Techniques | |
DOI | https://doi.org/10.1051/itmconf/20257301010 | |
Published online | 17 February 2025 |
- S. K. Sahu, A. Mokhade, N. D. Bokde, An overview of machine learning, deep learning, and reinforcement learning-based techniques in quantitative finance: recent progress and challenges. Applied Sciences, 13(3), 1956 (2023). [CrossRef] [Google Scholar]
- T. Théate, D. Ernst, An application of deep reinforcement learning to algorithmic trading. Expert Systems with Applications, 173, 114632 (2021). [CrossRef] [Google Scholar]
- A. L. S. Maia, F. de A. T. de Carvalho, Holt’s exponential smoothing and neural network models for forecasting interval-valued time series. International Journal of Forecasting, 27(3), 740-759 (2011). [CrossRef] [Google Scholar]
- E. Hoseinzade, S. Haratizadeh, Cnnpred: CNN-based stock market prediction using a diverse set of variables. Expert Systems with Applications, 129, 273-285 (2019). [CrossRef] [Google Scholar]
- M. Wen, P. Li, L. Zhang, Y. Chen, Stock market trend prediction using high-order information of time series. IEEE Access, 7, 28299-28308 (2019). [CrossRef] [Google Scholar]
- H. Li, Y. Shen, Y. Zhu, Stock price prediction using attention-based multi-input LSTM. In Asian Conference on Machine Learning, 454-469. PMLR, 2018. [Google Scholar]
- N. Kitaev, L. Kaiser, A. Levskaya, Reformer: The efficient transformer. arXiv preprint arXiv:2001.04451 (2020). [Google Scholar]
- H. Wu, J. Xu, J. Wang, M. Long, Autoformer: Decomposition transformers with auto- correlation for long-term series forecasting. Advances in Neural Information Processing Systems, 34, 22419-22430 (2021). [Google Scholar]
- H. Moussaoui, M. Benslimane, et al., Reinforcement learning: A review. International Journal of Computing and Digital Systems, 13(1), 1-1 (2023). [Google Scholar]
- S. Gao, Y. Wang, X. Yang, Stockformer: Learning hybrid trading machines with predictive coding. In IJCAI, 4766-4774 (2023). [Google Scholar]
- S. Sun, M. Qin, X. Wang, B. An, Prudex-compass: Towards systematic evaluation of reinforcement learning in financial markets. arXiv preprint arXiv:2302.00586 (2023). [Google Scholar]
- V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. A. Riedmiller, Playing atari with deep reinforcement learning. CoRR, abs/1312.5602 (2013). [Google Scholar]
- T. P. Lillicrap, Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015). [Google Scholar]
- V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, K. Kavukcuoglu, Asynchronous methods for deep reinforcement learning. CoRR, abs/1602.01783 (2016). [Google Scholar]
- J. Schulman, S. Levine, P. Moritz, M. I. Jordan, P. Abbeel, Trust region policy optimization (2017). [Google Scholar]
- J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017). [Google Scholar]
- S. Fujimoto, H. van Hoof, D. Meger, Addressing function approximation error in actor- critic methods (2018). [Google Scholar]
- T. Yu, G. Thomas, L. Yu, S. Ermon, J. Y. Zou, S. Levine, C. Finn, T. Ma, Mopo: Model- based offline policy optimization. Advances in Neural Information Processing Systems, 33, 14129-14142 (2020). [Google Scholar]
- S. J. Qin, T. A. Badgwell, An overview of industrial model predictive control technology. In AIChE Symposium Series, 93, 232-256. New York, NY: American Institute of Chemical Engineers, 1997. [Google Scholar]
- Y. Li, P. Ni, V. Chang, An empirical research on the investment strategy of stock market based on deep reinforcement learning model. In Proceedings of the 4th International Conference on Complexity, Future Information Systems and Risk (COMPLEXIS), 1, 52-58. SciTePress, 2019. [CrossRef] [Google Scholar]
- Y. Li, P. Ni, V. Chang, Application of deep reinforcement learning in stock trading strategies and stock forecasting. Computing, 102(6), 1305-1322 (2020). [CrossRef] [MathSciNet] [Google Scholar]
- H. Li, M. Hai, Deep reinforcement learning model for stock portfolio management based on data fusion. Neural Processing Letters, 56(2), 108 (2024). [CrossRef] [Google Scholar]
- K. Fu, Y. Yu, B. Li, Multi-feature supervised reinforcement learning for stock trading. IEEE Access, 2023. [Google Scholar]
- H.-G. Shin, I. Ra, Y.-H. Choi, A deep multimodal reinforcement learning system combined with CNN and LSTM for stock trading. In 2019 International Conference on Information and Communication Technology Convergence (ICTC), 7-11. IEEE, 2019. [Google Scholar]
- A. B. Altuner, Z. H. Kilimci, A novel deep reinforcement learning based stock price prediction using knowledge graph and community aware sentiments. Turkish Journal of Electrical Engineering and Computer Sciences, 30(4), 1506-1524 (2022). [CrossRef] [Google Scholar]
- O. Mihatsch, R. Neuneier, Risk-sensitive reinforcement learning. Machine Learning, 49, 267-290 (2002). [CrossRef] [Google Scholar]
- S. Jaimungal, S. M. Pesenti, Y. S. Wang, H. Tatsat, Robust risk-aware reinforcement learning. SIAM Journal on Financial Mathematics, 13(1), 213-226 (2022). [CrossRef] [MathSciNet] [Google Scholar]
- W. Shin, S.-J. Bu, S.-B. Cho, Automatic financial trading agent for low-risk portfolio management using deep reinforcement learning. arXiv preprint arXiv:1909.03278 (2019). [Google Scholar]
- T. P. Le, C. Rho, Y. Min, S. Lee, D. Choi, A2GAN: A deep reinforcement-based learning algorithm for risk-aware in finance. IEEE Access, 9, 137165-137175 (2021). [CrossRef] [Google Scholar]
- A. Coache, S. Jaimungal, A. Cartea, Conditionally elicitable dynamic risk measures for deep reinforcement learning. SIAM Journal on Financial Mathematics, 14(4), 1249-1289 (2023). [CrossRef] [MathSciNet] [Google Scholar]
- P. Markou, D. Corsten, Financial and operational risk management: Inventory effects in the gold mining industry. Production and Operations Management, 30(12), 4635-4655 (2021). [CrossRef] [Google Scholar]
- C. Chiarella, R. Dieci, X.-Z. He, Heterogeneity, market mechanisms, and asset price dynamics. In Handbook of Financial Markets: Dynamics and Evolution, 277-344. Elsevier, 2009. [CrossRef] [Google Scholar]
- S. Zeng, M. Hong, A. Garcia, Structural estimation of Markov decision processes in high-dimensional state space with finite-time guarantees. Operations Research, 2024. [Google Scholar]
- R. Yang, L. Yu, Y. Zhao, H. Yu, G. Xu, Y. Wu, Z. Liu, Big data analytics for financial market volatility forecast based on support vector machine. International Journal of Information Management, 50, 452-462 (2020). [CrossRef] [Google Scholar]
- S. Preuss, R. Königsgruber, How do corporate political connections influence financial reporting? a synthesis of the literature. Journal of Accounting and Public Policy, 40(1), 106802 (2021). [CrossRef] [Google Scholar]
- J. Kofroň, J. Stauber, The impact of the russo-ukrainian conflict on military expenditures of European states: security alliances or geography? Journal of Contemporary European Studies, 31(1), 151-168 (2023). [CrossRef] [Google Scholar]
- D. Zhang, S. Managi, Financial development, natural disasters, and economics of the Pacific small island states. Economic Analysis and Policy, 66, 168-181 (2020). [CrossRef] [Google Scholar]
- A. K. Khetan, S. Yusuf, P. Lopez-Jaramillo, A. Szuba, A. Orlandini, N. Mat-Nasir, A. Oguz, R. Gupta, A. Avezum, I. Rosnah, et al., Variations in the financial impact of the COVID-19 pandemic across 5 continents: a cross-sectional, individual level analysis. EClinicalMedicine, 44 (2022). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.