Open Access
Issue
ITM Web Conf.
Volume 73, 2025
International Workshop on Advanced Applications of Deep Learning in Image Processing (IWADI 2024)
Article Number 01011
Number of page(s) 13
Section Reinforcement Learning and Optimization Techniques
DOI https://doi.org/10.1051/itmconf/20257301011
Published online 17 February 2025
  1. Kabir M A, Liping Y, Sarker S K, et al. Portfolio optimization and valuation capability of multi-factor models: an observational evidence from Dhaka stock exchange[J]. Frontiers in Applied Mathematics and Statistics, 2023, 9: 1271485.(P7-8) [CrossRef] [Google Scholar]
  2. Aboussalah A M, Lee C G. Continuous control with stacked deep dynamic recurrent reinforcement learning for portfolio optimization[J]. Expert Systems with Applications, 2020, 140: 112891.(P11) [CrossRef] [Google Scholar]
  3. Guo Z, Kang G. Financial Investment Optimization by Integrating Multifactors and GA Improved UCB Algorithm[J]. Informatica, 2024, 48(13).(P116-125) [Google Scholar]
  4. Ni H, Xu H, Ma D, et al. Contextual combinatorial bandit on portfolio management[J]. Expert Systems with Applications, 2023, 221: 119677.(P8-10) [CrossRef] [Google Scholar]
  5. Zhu M, Zheng X, Wang Y, et al. Adaptive portfolio by solving multi-armed bandit via thompson sampling[J]. arXiv preprint arXiv:1911.05309, 2019.(P3-4) [Google Scholar]
  6. Charpentier A, Elie R, Remlinger C. Reinforcement learning in economics and finance[J]. Computational Economics, 2021: 1-38.(P430-431) [Google Scholar]
  7. Liu X Y, Yang H, Chen Q, et al. FinRL: A deep reinforcement learning library for automated stock trading in quantitative finance[J]. arXiv preprint arXiv:2011.09607, 2020.(P3-4) [Google Scholar]
  8. Rollinger T N, Hoffman S T. Sortino: a ‘sharper’ratio[J]. Chicago, Illinois: Red Rock Capital, 2013.(P3-8) [Google Scholar]
  9. Song Zongxiang. Application of Fuzzy C-Means Clustering in Stock Investment [D]. Northeast Petroleum University [2014-10-21] DOI:CNKI:CDMD:2.1017.096721.(P13-17) [Google Scholar]
  10. Manome N, Shinohara S, Chung U. Simple modification of the Upper Confidence Bound algorithm by generalized weighted wverages. arXiv preprint arXiv:2308.14350, 2023.(P2) [Google Scholar]
  11. Almulla H, Gay G. Learning how to search: generating effective test cases through adaptive fitness function selection[J]. Empirical Software Engineering, 2022, 27(2): 38.(P2) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.