Open Access
Issue |
ITM Web Conf.
Volume 73, 2025
International Workshop on Advanced Applications of Deep Learning in Image Processing (IWADI 2024)
|
|
---|---|---|
Article Number | 01017 | |
Number of page(s) | 15 | |
Section | Reinforcement Learning and Optimization Techniques | |
DOI | https://doi.org/10.1051/itmconf/20257301017 | |
Published online | 17 February 2025 |
- N. Sajid, P. J. Ball, T. Parr, K. J. Friston, Active inference: demystified and compared. arXiv:1909.10863v3 [cs.AI] (30 Oct 2020) [Google Scholar]
- V. Kuleshov, D. Precup, Algorithms for the multi-armed bandit problem. J. Mach. Learn. Res. 1 (2000), pp. 1-48 [Google Scholar]
- S. Agrawal, N. Goyal, Analysis of Thompson Sampling for the Multi-armed Bandit Problem. JMLR: Workshop and Conference Proceedings 23 (2012), pp. 39.1–39.26 [Google Scholar]
- D. Marković, H. Stojić, S. Schwöbel, S. J. Kiebel, An empirical evaluation of active inference in multi-armed bandits. Neural Networks 144 (2021), pp. 229–246 [Google Scholar]
- S. Gupta, S. Chaudhari, G. Joshi, O. Yağan, Multi-Armed Bandits with Correlated Arms. Carnegie Mellon University (2021) [Google Scholar]
- P. A. Ortega, D. A. Braun, Generalized Thompson sampling for sequential decision- making and causal inference. Complex Adaptive Systems Modeling 2 (2014) [Google Scholar]
- D. Cortes, Adapting multi-armed bandits policies to contextual bandits scenarios. arXiv:1811.04383v2 (2019) [Google Scholar]
- G. Burtini, J. Loeppky, R. Lawrence, A Survey of Online Experiment Design with the Stochastic Multi-Armed Bandit. arXiv:1510.00757 (2015) [Google Scholar]
- Y. Li, L. Liu, W. Pu, H. Liang, Z.-Q. Luo, Optimistic Thompson Sampling for No- Regret Learning in Unknown Games. arXiv:2402.09456v2 [cs.LG] (2024) [Google Scholar]
- W. Qian, C.-K. Ing, J. Liu, Adaptive Algorithm for Multi-armed Bandit Problem with High-dimensional Covariates (2023) [Google Scholar]
- A. Tschantz, M. Baltieri, A. K. Seth, C. L. Buckley, Scaling active inference. arXiv:1911.10601v1 [cs.LG] (2019) [Google Scholar]
- G. Pezzulo, F. Rigoli, K. Friston, Active Inference, Homeostatic Regulation and Adaptive Behavioural Control. Prog. Neurobiol. (2024) [Google Scholar]
- A. Paul, T. Isomura, A. Razi, On Predictive Planning and Counterfactual Learning in Active Inference. Entropy 26 (2024), p. 484 [CrossRef] [Google Scholar]
- M. S. Tomov, V. Q. Truong, R. A. Hundia, S. J. Gershman, Dissociable neural correlates of uncertainty underlie different exploration strategies. Nat. Commun. 11 (2020), p. 2371 [CrossRef] [Google Scholar]
- S. Gijsen, M. Grundei, F. Blankenburg, Active inference and the two-step task. Sci. Rep. 12 (2022), p. 17682 [CrossRef] [Google Scholar]
- W. R. Thompson, On the Likelihood that One Unknown Probability Exceeds Another in View of the Evidence of Two Samples. Biometrika 25(3/4) (1933), pp. 285-294 [CrossRef] [Google Scholar]
- O. Chapelle, L. Li, An Empirical Evaluation of Thompson Sampling. Yahoo! Research (2023) [Google Scholar]
- T. Lookman, P. V. Balachandran, D. Xue, R. Yuan, Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design. npj Comput. Mater. 5 (2019), p. 21 [Google Scholar]
- N. Srinivas, A. Krause, S. M. Kakade, M. Seeger, Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design. (2010) [Google Scholar]
- S. R. Chowdhury, A. Gopalan, On Kernelized Multi-armed Bandits. (2017) [Google Scholar]
- N. Cesa-Bianchi, C. Gentile, G. Lugosi, Regret minimization for reserve prices in second-price auctions. IEEE Trans. Inf. Theory 59(11) (2013), pp. 7455-7462 [Google Scholar]
- M. Valko, A. Carpentier, R. Munos, Semi-bandit optimization in the adversarial setting. (2014) [Google Scholar]
- S. Wakayama, N. Ahmed, Active Inference for Autonomous Decision-Making with Contextual Multi-Armed Bandits. University of Colorado Boulder (2023) [Google Scholar]
- E. Delavari, J. Moore, J. Hong, J. Kwon, Towards Human-Like Driving: Active Inference in Autonomous Vehicle Control. arXiv:2407.07684 (2024) [Google Scholar]
- T. Yu, B. Kveton, Z. Wen, R. Zhang, O. J. Mengshoel, Graphical Models Meet Bandits: A Variational Thompson Sampling Approach. In Proc. of the 37th International Conference on Machine Learning, PMLR 119 (2020) [Google Scholar]
- F. M. Harper, J. A. Konstan, The movielens datasets: History and context. ACM Trans. Interact. Intell. Syst. (TiiS) 5, 4 (2015), Article 19 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.